论文部分内容阅读
摘 要:彬長矿区孟村煤矿中央一号回风大巷因高地应力、DF29大断层和强采动等多因素耦合作用,使得原有锚网索喷支护失效,导致围岩呈现变形大、破坏严重的问题。为此,利用钻孔勘探、地应力原位测量和实验室试验等技术获得断层区域内的地质构造和地应力赋存环境,探明了巷道围岩的变形破坏机理,研发了一种可注性好的反应温度低于95 ℃、抗压强度大于40 MPa的矿用复合注浆加固材料。并结合数值模拟所得围岩塑性破坏范围和分布特征,提出了一种以中空注浆锚索为核心的锚注补强支护技术,对其支护参数进行了优化。结果表明:该锚注补强支护技术在浅部围岩内形成厚度为4.5 m的注浆加固环,且通过注浆锚索与深部围岩形成一个整体,有效维持巷道围岩的稳定,为新型复合注浆加固材料在断层破碎区巷道围岩的锚注加固工程实践提供参考和技术支持。
关键词:高地应力;断层破碎区;锚注支护;中空注浆锚索;复合注浆材料中图分类号:TD 353
文献标志码:A
文章编号:1672-9315(2021)04-0616-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0406开放科学(资源服务)标识码(OSID):
Bolt-grouting support for roadway in fault fracture zone
based on composite grouting material
GENG Yaoqiang1,2,3,SUO Yonglu1,ZHAO Tengfei2,3,
ZHANG Hongwei4,HU Guohe2,3,MA Xiaohui4
(1.College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Weinan Shaanxi Coal Qichen Technology Co.,Ltd.,Weinan 714000,China;
3.National & Local United Engineering Research Center of Green Safety Efficient Mining,Xi’an 710065,China;
4.Shaanxi Bingchang Mengcun Coal Mining Co.,Ltd.,Xianyang 712000,China)
Abstract:Due to the coupling effect of multiple factors such as high geostress,DF29 fault and strong mining,the original bolt-mesh-cable-shotcrete support fails in No.1 return airway of Mengcun coal mine in Binchang mining area,resulting in large deformation and serious damage of surrounding rock.To this end,the geological structure and stress occurrence environment in the fault area were obtained by drilling exploration,in-situ stress measurement and laboratory test,and the deformation and failure mechanism of roadway surrounding rock was proved.A kind of composite grouting reinforcement material for mine with good groutability was developed,with reaction temperature lower than 95 ℃ and compressive strength greater than 40 MPa.Combined with the plastic failure range and distribution characteristics of surrounding rock obtained by numerical simulation,a bolt-grouting reinforcement support technology with high prestressed hollow grouting anchor cable as the core was proposed,and its support parameters were optimized.The results show that this bolt-grouting reinforcement technology forms a grouting reinforcement ring with a thickness of 4.5 m in the shallow surrounding rock,and forms a whole in the deep surrounding rock through the grouting anchor cable,which can provide reference and technical support for the anchor grouting reinforcement engineering practice of new composite grouting reinforcement material in roadway surrounding rock in fault fracture areas. Key words:high geostress;fault fracture zone;bolt-grouting support;hollow grouting anchor cable;composite grouting material
0 引 言
深部“三高一扰动”作用使得复杂地质环境下的巷道围岩呈现变形大和破坏严重的特点[1-3]。强烈的开采扰动应力使断层出现不同程度的活化,其对突水溃沙、顶板冒落、冲击地压、片帮、煤岩体失稳等灾害产生重大影响[4-6]。国内外学者针对断层区域煤岩体稳定性控制的研究表明:注浆加固技术可达到有效控制断层开采扰动区围岩变形破坏的目的[7-10]。水泥及添加剂等因其来源广、成本低和结石率高等优点而成为注浆加固的首选材料。但由于水泥的颗粒较大,导致其可注性和加固效果较差。为此,管学茂、郭东明和吴爱祥等研制了超细水泥浆,解决了可注性差的问题[11-14]。但超细水泥浆耐久性差,后期强度往往不足,限制了其应用[15]。而聚氨酯类化学注浆材料因具有黏度低、可注性好和强度高等优点而成为注浆加固材料的新选择[16],但传统的聚氨酯注浆加固材料需掺用一定的阻燃剂来满足阻燃要求[17],而这些阻燃剂多含有高氯离子,危害矿工健康。因而,研制一种既能保留聚氨酯本身良好的性能又能避免其阻燃等缺点的新型材料成为必须解决的问题。在巷道围岩稳定控制上,刘泉声等揭示了深部围岩的变形规律及支护难点,提出分步联合支护的设计理念[18]。郭相平等分析了应力环境及围岩变形破坏特征,提出了全锚索支护技术[19]。孟庆彬等获得了巷道断面形状对围岩变形破坏失稳的影响规律,提出“三锚”联合支护体系[20-22]。王连国等基于巷道围岩的变形及破坏特征,提出了以注浆锚杆和注浆锚索为核心的深-浅耦合全断面锚注支护方法[23]。这些为巷道围岩的稳定性控制提供了宝贵的经验,但巷道在不同复杂地质环境下的破坏特征差异明显,因而其支护方法也将是不同的。针对上述问题,以彬长矿区孟村煤矿中央一号回风大巷过DF29大断层为背景,研制了一种可注性好、反应温度低的新型注浆加固材料。并据巷道围岩变形破坏范围和分布特征,提出一种以中空注浆锚索为核心的锚注加固补强技术,且对其注浆加固效果进行了验证。
1 井田概况及地应力特征
1.1 工程地质概况孟村煤矿位于国家规划的14个亿吨级大型煤炭基地之一的黃陇侏罗纪煤田彬长矿区中西部,建设规模600万t/a,以4#煤层为主采煤层,煤层厚度平均为24 m,埋深普遍超过700 m,采用综采分层放顶煤采煤方法,回采煤层厚度10.5~12.0 m。中央一号回风大巷于里程1 643 m位置揭露DF29断层,落差33 m,煤层顶板破坏较严重,如图1所示。中央一号回风大巷受高地应力、冲击地压、DF29大断层、采动影响、厚煤层托顶煤等因素影响,造成1 560~1 800 m区段巷道变形破坏严重,主要表现为巷道底鼓、锚索拉断、巷道顶部浆皮局部开裂、脱落等,且巷道断层附近约40 m范围存在淋水现象,严重影响行人安全,如图2所示。
根据中央一号回风断层附近周围钻孔资料及已揭露的地质情况综合分析表明:煤层结构较简单,一般含2层夹矸,且位于煤层的中上部,煤层上部均为块状,下部为碎片及碎粒状。实验室测得4#煤上、下分层的单轴抗压强度分别为19.37,26.88 MPa。而4#煤层伪顶多为黑色炭质泥岩,厚度小,直接顶板为较易冒落的泥岩、粉砂岩、砂质泥岩,岩石饱和抗压强度为0.4~25.8 MPa。基本顶为泥质胶结的中粒砂岩和粗粒砂岩,实验室测得其单轴抗压强度分别为28.75,24.53 MPa。底板岩性一般为泥岩及粉砂岩,局部为细粒砂,泥岩单轴抗压强度平均为17.99 MPa。中央一号回风巷道围岩柱状图及物理力学参数见表1。
1.2 地应力特征为获得矿区地应力分布特征,对首采区的3个测点进行了地应力原位测量,其测点和地应力方向如图3所示。结果表明:中央一号回风大巷处测点的最大主应力为水平应力,其值为30.52 MPa,与巷道轴向夹角为65°~81°。该地应力场属于超高应力区,对巷道顶底的稳定性影响较大。
1.3 巷道围岩原支护方式及破坏特征中央一号回风巷道断面为直墙半圆拱形,巷道设计宽度6 m,高度4.9 m,原始设计采用“锚网索喷”支护:全断面铺设1 500 mm×
800 mm×100 mm钢筋网;喷射C25混凝土150 mm;螺纹锚杆参数为22 mm×L2500 mm,间排距700 mm×700 mm;锚索参数为21.8 mm×L7 100 mm,间排距1 200 mm×1 400 mm。但由于高地应力、煤岩层含水、DF29断层、和开挖扰动等使得原有支护失效而破坏。经现场探查和钻孔发现:巷道1 560~1 800 m区段的喷层大片开裂脱落、钢筋网鼓出外露、拱顶变平、顶板下沉、架棚弯曲,如图4所示;巷道帮部和肩角处破坏较大,两帮部距巷道4 m处存在大裂隙。
2 新型矿用复合注浆加固材料市场上使用较多的聚氨酯类加固材料具有较高的反应温度(最高反应温度可达140 ℃以上),阻燃性能相对较差,需要加入大量含卤素元素的阻燃剂来达到阻燃性要求,施工现场一旦发生聚热导致的高温冒烟或着火,就会产生大量的有毒气体,危害到井下施工人员的人身安全。针对聚氨酯加固材料存在的问题,结合预应力中空注浆锚索,研发了一种低反应温度高强度矿用复合注浆加固材料(SCPJG-2),该材料通过添加环氧树脂来降低聚氨酯(PAPI)的用量,从而达到降低最高反应温度,提高抗压强度的目的。而且,该注浆材料还具有反应时间可调、可注性与流动性好和粘结性强的优点。矿用复合注浆加固材料如图5所示,其性能指标见表2。
3 断层破碎带巷道围岩锚注支护设计
3.1 支护原理考虑到断层破碎带巷道围岩变形破坏较为严重,在原有支护基础上,选择以中空注浆锚索为主的锚注支护补强技术,其支护原理是:通过中空注浆锚索将矿用新型复合注浆材料注入破裂围岩内,以充填孔裂隙等缺陷,使其胶结成整体,并在巷道浅部区域内形成注浆加固环,以此提高围岩体的内聚力及内摩擦角,增加围岩体的整体承载能力。此外在巷道深部区域内形成局部注浆加固体,以与注浆锚索共同对浅部围岩加固部分起到悬吊、承载的作用,达到控制围岩稳定的目的。 3.2 支护方案及参数在设计锚注补强支护相关参数时,为了能更精确地确定注浆锚索的长度和间距等,需要先获得巷道围岩的塑性破裂區范围和分布特征[24]。因此,利用COMSOL数值软件建立了中央一号回风大巷二维模型,如图6所示,尺寸60 m×60 m。在进行巷道围岩塑性破坏区数值计算时,模型的左右边界为辊支撑边界,即约束法向位移;底部边界为固定边界,即约束所有位移;上边界为上覆岩层的重量为17.5 MPa,其它围岩力学参数见表1。而在进行巷道内复合注浆浆液的渗透扩散范围模拟时,模型的四周皆为理想不可渗透边界;巷道边界也为不可渗透边界;中空注浆锚索内为复合注浆浆液的初始浆液压头边界。
根据数值模拟得到巷道围岩塑性破坏云图,如图7所示。从图7可知,巷道围岩在顶板和两帮肩窝的破坏较严重,其塑性破坏区分别为4.8和4.1 m,与现场探查结果基本一致,其帮部塑性破坏区约为2.5 m。
依据巷道围岩塑性破裂区范围和特征及现场探查结果,设计锚注补强支护方案如下
1)顶板布置中空注浆锚索,其规格为22 mm×L7 100 mm,每根锚索使用2支型号为MSK2335和2支型号为MSZ2335的树脂锚固剂,间排距为1 500 mm×1 400 mm,每排5根。其中空注浆锚索结构形式如图8所示。
2)巷道两帮肩窝使用中空注浆锚索进行补强,其型号规格为22 mm×L5 800 mm,间排距为1 500 mm×1 400 mm,每排2根。其中央一号回风大巷的完整锚注补强支护方案如图9所示。
3.3 支护效果图10为现场获得的注浆浆液在顶板内的扩散效果图,其表明注浆浆液能有效扩散并充填胶结破裂围岩,增加了围岩结构的整体性和承载能力。而注浆锚索由树脂端锚变成全长锚固,促使支护体与围岩结构耦合紧密,整体抵抗动载荷对巷道结构稳定性的冲击能力加强。同时,该区域的淋水也得到有效治理。
为进一步更直观地看到围岩注浆效果,基于上述支护方案,参照文献[24]的方法,通过COMSOL模拟得到巷道围岩内的注浆扩散效果,如图11所示。从图11可知,注浆锚索在浅部围岩内形成厚度为4.5 m的注浆加固环,浆液能够很好覆盖浅部围岩的破坏范围,使浅部破碎的围岩充分地胶结在一起。此外,注浆锚索又能在深部围岩形成注浆加固体,不仅对深部围岩进行加固,且能与浅部围岩形成一个整体,提高围岩整体的承载能力,从而控制巷道围岩变形破坏,维持巷道围岩的稳定。
4 结 论
1)通过钻孔勘探、地应力原位测量和实验室试验,获得断层区域内的复杂地质构造、岩性和地应力等特征,DF29断层落差33 m,为目前彬长矿区最大揭露断层,最大主应力为水平应力,其值为30.52 MPa,地应力场属于超高应力区。探明了断层破碎区巷道围岩的变形破坏特征,并揭示了其破坏机理。
2)针对断层破碎区巷道围岩所处的复杂地质构造环境,研发了一种可注性好的反应温度低于95 ℃、抗压强度大于40 MPa的矿用复合注浆加固材料。
3)基于现场探测和数值模拟所得巷道围岩的破坏特征,提出了一种以中空注浆锚索为核心的锚注补强支护方法,并优化了支护参数。其现场加固结果表明,该技术能有效维持巷道围岩的稳定。
参考文献(References):
[1] 何满朝,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.HE Manchao,XIE Heping,PENG Suping,et al.Research on rock mechanics of deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
[2]何富连,张广超.深部高水平构造应力巷道围岩稳定性分析及控制[J].中国矿业大学学报,2015,44(3):466-476.HE Fulian,ZHANG Guangchao.Analysis and control of surrounding rock stability of deep roadway with high horizontal tectonic stress[J].Journal of China University of Mining and Technology,2015,44(3):466-476.
[3]王卫军,罗立强,黄文忠,等.高应力厚层软弱顶板煤巷锚索支护失效机理及合理长度研究[J].采矿与安全工程学报,2014,31(1):17-21.WANG Weijun,LUO Liqiang,HUANG Wenzhong,et al.Study on failure mechanism and reasonable length of anchor cable support in coal roadway with high stress and thick layer with soft roof[J].Journal of Mining & Safety Engineering,2014,31(1):17-21.
[4]来兴平,刘小明,曹建涛,等.开采扰动区断层采动活化诱发岩体动态变形模型实验[J].西安科技大学学报,2014,34(6):647-651.LAI Xingping,LIU Xiaoming,CAO Jiantao,et al.Dynamic deformation model experiment of rock mass induced by fault mining activation in mining disturbance area[J].Journal of Xi’an University of Science and Technology,2014,34(6):647-651. [5]吕兆海,来兴平,赵长红,等.断层破碎区煤岩体失稳机制与注浆耦合控制研究[J].华北科技学院学报,2018,15(2):19-25.LYU Zhaohai,LAI Xingping,ZHAO Changhong,et al.Study on instability mechanism of coal and rock mass and grouting coupling control in fault fracture zone[J].Journal of North China Institute of Science and Technology,2018,15(2):19-25.
[6]刘小明,来兴平,陶冰鑫,等.开采扰动区断层水患防治[J].西安科技大学学报,2015,35(6):715-720.LIU Xiaoming,LAI Xingping,TAO Bingxin,et al.Prevention of groundwater hazards due to fault activation in excavation disturbed zone[J].Journal of Xi’an University of Science and Technology,2015,35(6):715-720.
[7]孟慶彬,韩立军,齐彪,等.复杂地质条件下巷道过断层关键技术研究及应用[J].采矿与安全工程学报,2017,34(2):199-207.MENG Qingbin,HAN Lijun,QI Biao,et al.Study and application of key technology for roadway crossing faults under complex geological conditions[J].Journal of Mining & Safety Engineering,2017,34(2):199-207.
[8]张喜传,周玉军,张海波.基于新型注浆材料的工作面过破碎断层措施[J].煤矿安全,2018,49(9):187-193.ZHANG Xichuan,ZHOU Yujun,ZHANG Haibo.Measures of working face passing through broken fault based on new grouting strengthening materials[J].Safety in Coal Mines,2018,49(9):187-193.
[9]张振峰,康红普,姜志云,等.千米深井巷道高压劈裂注浆改性技术研发与实践[J].煤炭学报,2020,45(3):972-981.ZHANG Zhenfeng,KANG Hongpu,JIANG Zhiyun,et al.Study and application of high-pressure splitting grouting modification technology in coalmine with depth more than 1000m[J].Journal of China Coal Society,2020,45(3):972-981.
[10]熊祖强,王凯,丁子文.新型无机注浆材料在大采高工作面过断层注浆加固中的应用[J].煤矿安全,2017,48(4):148-151.XIONG Zuqian,WANG Kai,DING Ziwen.Application of a kind of new type inorganic grouting material in grouting reinforcement of passing through fault at large mining height working face[J].Safety in Coal Mines,2017,48(4):148-151.
[11]管学茂,胡曙光,丁庆军,等.超细水泥基注浆材料性能研究[J].煤矿设计,2001,33(3):28-31.GUAN Xuemao,HU Shuguang,DING Qingjun,et al.Research on properties of superfine cement-based grouting materials[J].Coal Mine Design,2001,33(3):28-31.
[12]郭东明,李妍妍,左志昊,等.低黏度超细水泥浆液配比试验研究[J].煤矿安全,2019,50(5):72-77.GUO Dongming,LI Yanyan,ZUO Zhihao,et al.Experimental study on the ratio of ultra-fine cement slurry with low viscosity[J].Safety in Coal Mines,2019,50(5):72-77.
[13]郭东明,谭霁爽,肖正星,等.超细水泥浆液最优配比及注浆效果研究[J].河南理工大学学报(自然科学版),2017,36(5):1-8,34.GUO Dongming,TAN Jishuang,XIAO Zhengxing,et al.Research on optimal ratio and Grouting Effect of ultra-fine cement slurry[J].Journal of Henan Polytechnic University(Natural Science Edition),2017,36(5):1-8,34.
[14]吴爱祥,于少峰,韩斌,等.超细水泥注浆溶液配比优化及扩散规律研究[J].采矿与安全工程学报,2014,31(2):304-309.WU Aixiang,YU Shaofeng,HAN Bin,et al.Research on the ratio optimization and diffusion law of ultra-fine cement grouting solution[J].Journal of Mining & Safety Engineering,2014,31(2):304-309. [15]SHA F,LI S C,LIU R T,et al.Performance of typical cement suspension-sodium silicate double slurry grout[J].Construction and Building Materials,2019,200:408-419.
[16]馮志强,康红普,韩国强.煤矿用无机盐改性聚氨酯注浆材料的研究[J].岩土工程学报,2013,35(8):1559-1564.FENG Zhiqiang,KANG Hongpu,HANG Guoqiang.Study on inorganic salt modified polyurethane grouting material for coal mine[J].Journal of Geotechnical Engineering,2013,35(8):1559-1564.
[17]吴怀国.矿用高分子注浆加固材料安全性试验研究[J].煤炭科学技术,2013,41(11):53-55.WU Huaiguo.Experimental study on safety of polymer grouting reinforcement materials for mining[J].Coal Science and Technology,2013,41(11):53-55.
[18]刘泉声,康永水,白运强.顾桥煤矿深井岩巷破碎软弱围岩支护方法探索[J].岩土力学,2011,32(10):3097-3104.LIU Quansheng,KANG Yongshui,BAI Yunqiang.Exploration on supporting method of broken soft surrounding rock in deep shaft roadway of Guqiao Coal Mine[J].Rock and Soil Mechanics,2011,32(10):3097-3104.
[19]郭相平,郝登云.深部软岩巷道围岩变形特征及全锚索支护机理[J].中国矿业,2019,28(12):123-127.Guo Xiangping,HAO Dengyun.Deformation characteristics of surrounding rock of deep soft rock roadway and supporting mechanism of full anchor cable[J].China Mining,2019,28(12):123-127.
[20]孟庆彬,韩立军,乔卫国,等.深部高应力软岩巷道断面形状优化设计数值模拟研究[J].采矿与安全工程学报,2012,29(5):650-656.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Numerical simulation of cross-section shape optimization design of deep soft rock roadway under highstress[J].Journal of Mining & Safety Engineering,2012,29(5):650-656.
[21]孟庆彬,韩立军,乔卫国,等.深部高应力软岩巷道变形破坏特性研究[J].采矿与安全工程学报,2012,29(4):481-486.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Research on deformation failure characteristics of the deep high-stress soft rock roadways[J].Journal of Mining & Safety Engineering,2012,29(4):481-486.
[22]孟庆彬,韩立军,乔卫国,等.赵楼矿深部软岩巷道变形破坏机制及控制技术[J].采矿与安全工程学报,2013,30(2):165-172.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.The deformation failure mechanism and control techniques of soft rock in deep roadways in Zhaolou Mine [J].Journal of Mining & Safety Engineering,2013,30(2):165-172.
[23]王连国,陆银龙,黄耀光,等.深部软岩巷道深-浅耦合全断面锚注支护研究[J].中国矿业大学学报,2016,45(1):11-18.WANG Lianguo,LU Yinlong,HUANG Yaoguang,et al.Research on deep-shallow coupled full-section bolting support for deep soft rock Roadway[J].Journal of China University of Mining and Technology,2016,45(1):11-18.
[24]黄耀光,张天军.深部高地应力巷道塑性破坏特征及注浆支护[J].采矿与安全工程学报,2019,36(5):949-958.HUANG Yaoguang,ZHANG Tianjun.Plastic failure characteristics of deep high-stress roadway and grouting support[J].Journal of Mining & Safety Engineering,2019,36(5):949-958.
关键词:高地应力;断层破碎区;锚注支护;中空注浆锚索;复合注浆材料中图分类号:TD 353
文献标志码:A
文章编号:1672-9315(2021)04-0616-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0406开放科学(资源服务)标识码(OSID):
Bolt-grouting support for roadway in fault fracture zone
based on composite grouting material
GENG Yaoqiang1,2,3,SUO Yonglu1,ZHAO Tengfei2,3,
ZHANG Hongwei4,HU Guohe2,3,MA Xiaohui4
(1.College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;
2.Weinan Shaanxi Coal Qichen Technology Co.,Ltd.,Weinan 714000,China;
3.National & Local United Engineering Research Center of Green Safety Efficient Mining,Xi’an 710065,China;
4.Shaanxi Bingchang Mengcun Coal Mining Co.,Ltd.,Xianyang 712000,China)
Abstract:Due to the coupling effect of multiple factors such as high geostress,DF29 fault and strong mining,the original bolt-mesh-cable-shotcrete support fails in No.1 return airway of Mengcun coal mine in Binchang mining area,resulting in large deformation and serious damage of surrounding rock.To this end,the geological structure and stress occurrence environment in the fault area were obtained by drilling exploration,in-situ stress measurement and laboratory test,and the deformation and failure mechanism of roadway surrounding rock was proved.A kind of composite grouting reinforcement material for mine with good groutability was developed,with reaction temperature lower than 95 ℃ and compressive strength greater than 40 MPa.Combined with the plastic failure range and distribution characteristics of surrounding rock obtained by numerical simulation,a bolt-grouting reinforcement support technology with high prestressed hollow grouting anchor cable as the core was proposed,and its support parameters were optimized.The results show that this bolt-grouting reinforcement technology forms a grouting reinforcement ring with a thickness of 4.5 m in the shallow surrounding rock,and forms a whole in the deep surrounding rock through the grouting anchor cable,which can provide reference and technical support for the anchor grouting reinforcement engineering practice of new composite grouting reinforcement material in roadway surrounding rock in fault fracture areas. Key words:high geostress;fault fracture zone;bolt-grouting support;hollow grouting anchor cable;composite grouting material
0 引 言
深部“三高一扰动”作用使得复杂地质环境下的巷道围岩呈现变形大和破坏严重的特点[1-3]。强烈的开采扰动应力使断层出现不同程度的活化,其对突水溃沙、顶板冒落、冲击地压、片帮、煤岩体失稳等灾害产生重大影响[4-6]。国内外学者针对断层区域煤岩体稳定性控制的研究表明:注浆加固技术可达到有效控制断层开采扰动区围岩变形破坏的目的[7-10]。水泥及添加剂等因其来源广、成本低和结石率高等优点而成为注浆加固的首选材料。但由于水泥的颗粒较大,导致其可注性和加固效果较差。为此,管学茂、郭东明和吴爱祥等研制了超细水泥浆,解决了可注性差的问题[11-14]。但超细水泥浆耐久性差,后期强度往往不足,限制了其应用[15]。而聚氨酯类化学注浆材料因具有黏度低、可注性好和强度高等优点而成为注浆加固材料的新选择[16],但传统的聚氨酯注浆加固材料需掺用一定的阻燃剂来满足阻燃要求[17],而这些阻燃剂多含有高氯离子,危害矿工健康。因而,研制一种既能保留聚氨酯本身良好的性能又能避免其阻燃等缺点的新型材料成为必须解决的问题。在巷道围岩稳定控制上,刘泉声等揭示了深部围岩的变形规律及支护难点,提出分步联合支护的设计理念[18]。郭相平等分析了应力环境及围岩变形破坏特征,提出了全锚索支护技术[19]。孟庆彬等获得了巷道断面形状对围岩变形破坏失稳的影响规律,提出“三锚”联合支护体系[20-22]。王连国等基于巷道围岩的变形及破坏特征,提出了以注浆锚杆和注浆锚索为核心的深-浅耦合全断面锚注支护方法[23]。这些为巷道围岩的稳定性控制提供了宝贵的经验,但巷道在不同复杂地质环境下的破坏特征差异明显,因而其支护方法也将是不同的。针对上述问题,以彬长矿区孟村煤矿中央一号回风大巷过DF29大断层为背景,研制了一种可注性好、反应温度低的新型注浆加固材料。并据巷道围岩变形破坏范围和分布特征,提出一种以中空注浆锚索为核心的锚注加固补强技术,且对其注浆加固效果进行了验证。
1 井田概况及地应力特征
1.1 工程地质概况孟村煤矿位于国家规划的14个亿吨级大型煤炭基地之一的黃陇侏罗纪煤田彬长矿区中西部,建设规模600万t/a,以4#煤层为主采煤层,煤层厚度平均为24 m,埋深普遍超过700 m,采用综采分层放顶煤采煤方法,回采煤层厚度10.5~12.0 m。中央一号回风大巷于里程1 643 m位置揭露DF29断层,落差33 m,煤层顶板破坏较严重,如图1所示。中央一号回风大巷受高地应力、冲击地压、DF29大断层、采动影响、厚煤层托顶煤等因素影响,造成1 560~1 800 m区段巷道变形破坏严重,主要表现为巷道底鼓、锚索拉断、巷道顶部浆皮局部开裂、脱落等,且巷道断层附近约40 m范围存在淋水现象,严重影响行人安全,如图2所示。
根据中央一号回风断层附近周围钻孔资料及已揭露的地质情况综合分析表明:煤层结构较简单,一般含2层夹矸,且位于煤层的中上部,煤层上部均为块状,下部为碎片及碎粒状。实验室测得4#煤上、下分层的单轴抗压强度分别为19.37,26.88 MPa。而4#煤层伪顶多为黑色炭质泥岩,厚度小,直接顶板为较易冒落的泥岩、粉砂岩、砂质泥岩,岩石饱和抗压强度为0.4~25.8 MPa。基本顶为泥质胶结的中粒砂岩和粗粒砂岩,实验室测得其单轴抗压强度分别为28.75,24.53 MPa。底板岩性一般为泥岩及粉砂岩,局部为细粒砂,泥岩单轴抗压强度平均为17.99 MPa。中央一号回风巷道围岩柱状图及物理力学参数见表1。
1.2 地应力特征为获得矿区地应力分布特征,对首采区的3个测点进行了地应力原位测量,其测点和地应力方向如图3所示。结果表明:中央一号回风大巷处测点的最大主应力为水平应力,其值为30.52 MPa,与巷道轴向夹角为65°~81°。该地应力场属于超高应力区,对巷道顶底的稳定性影响较大。
1.3 巷道围岩原支护方式及破坏特征中央一号回风巷道断面为直墙半圆拱形,巷道设计宽度6 m,高度4.9 m,原始设计采用“锚网索喷”支护:全断面铺设1 500 mm×
800 mm×100 mm钢筋网;喷射C25混凝土150 mm;螺纹锚杆参数为22 mm×L2500 mm,间排距700 mm×700 mm;锚索参数为21.8 mm×L7 100 mm,间排距1 200 mm×1 400 mm。但由于高地应力、煤岩层含水、DF29断层、和开挖扰动等使得原有支护失效而破坏。经现场探查和钻孔发现:巷道1 560~1 800 m区段的喷层大片开裂脱落、钢筋网鼓出外露、拱顶变平、顶板下沉、架棚弯曲,如图4所示;巷道帮部和肩角处破坏较大,两帮部距巷道4 m处存在大裂隙。
2 新型矿用复合注浆加固材料市场上使用较多的聚氨酯类加固材料具有较高的反应温度(最高反应温度可达140 ℃以上),阻燃性能相对较差,需要加入大量含卤素元素的阻燃剂来达到阻燃性要求,施工现场一旦发生聚热导致的高温冒烟或着火,就会产生大量的有毒气体,危害到井下施工人员的人身安全。针对聚氨酯加固材料存在的问题,结合预应力中空注浆锚索,研发了一种低反应温度高强度矿用复合注浆加固材料(SCPJG-2),该材料通过添加环氧树脂来降低聚氨酯(PAPI)的用量,从而达到降低最高反应温度,提高抗压强度的目的。而且,该注浆材料还具有反应时间可调、可注性与流动性好和粘结性强的优点。矿用复合注浆加固材料如图5所示,其性能指标见表2。
3 断层破碎带巷道围岩锚注支护设计
3.1 支护原理考虑到断层破碎带巷道围岩变形破坏较为严重,在原有支护基础上,选择以中空注浆锚索为主的锚注支护补强技术,其支护原理是:通过中空注浆锚索将矿用新型复合注浆材料注入破裂围岩内,以充填孔裂隙等缺陷,使其胶结成整体,并在巷道浅部区域内形成注浆加固环,以此提高围岩体的内聚力及内摩擦角,增加围岩体的整体承载能力。此外在巷道深部区域内形成局部注浆加固体,以与注浆锚索共同对浅部围岩加固部分起到悬吊、承载的作用,达到控制围岩稳定的目的。 3.2 支护方案及参数在设计锚注补强支护相关参数时,为了能更精确地确定注浆锚索的长度和间距等,需要先获得巷道围岩的塑性破裂區范围和分布特征[24]。因此,利用COMSOL数值软件建立了中央一号回风大巷二维模型,如图6所示,尺寸60 m×60 m。在进行巷道围岩塑性破坏区数值计算时,模型的左右边界为辊支撑边界,即约束法向位移;底部边界为固定边界,即约束所有位移;上边界为上覆岩层的重量为17.5 MPa,其它围岩力学参数见表1。而在进行巷道内复合注浆浆液的渗透扩散范围模拟时,模型的四周皆为理想不可渗透边界;巷道边界也为不可渗透边界;中空注浆锚索内为复合注浆浆液的初始浆液压头边界。
根据数值模拟得到巷道围岩塑性破坏云图,如图7所示。从图7可知,巷道围岩在顶板和两帮肩窝的破坏较严重,其塑性破坏区分别为4.8和4.1 m,与现场探查结果基本一致,其帮部塑性破坏区约为2.5 m。
依据巷道围岩塑性破裂区范围和特征及现场探查结果,设计锚注补强支护方案如下
1)顶板布置中空注浆锚索,其规格为22 mm×L7 100 mm,每根锚索使用2支型号为MSK2335和2支型号为MSZ2335的树脂锚固剂,间排距为1 500 mm×1 400 mm,每排5根。其中空注浆锚索结构形式如图8所示。
2)巷道两帮肩窝使用中空注浆锚索进行补强,其型号规格为22 mm×L5 800 mm,间排距为1 500 mm×1 400 mm,每排2根。其中央一号回风大巷的完整锚注补强支护方案如图9所示。
3.3 支护效果图10为现场获得的注浆浆液在顶板内的扩散效果图,其表明注浆浆液能有效扩散并充填胶结破裂围岩,增加了围岩结构的整体性和承载能力。而注浆锚索由树脂端锚变成全长锚固,促使支护体与围岩结构耦合紧密,整体抵抗动载荷对巷道结构稳定性的冲击能力加强。同时,该区域的淋水也得到有效治理。
为进一步更直观地看到围岩注浆效果,基于上述支护方案,参照文献[24]的方法,通过COMSOL模拟得到巷道围岩内的注浆扩散效果,如图11所示。从图11可知,注浆锚索在浅部围岩内形成厚度为4.5 m的注浆加固环,浆液能够很好覆盖浅部围岩的破坏范围,使浅部破碎的围岩充分地胶结在一起。此外,注浆锚索又能在深部围岩形成注浆加固体,不仅对深部围岩进行加固,且能与浅部围岩形成一个整体,提高围岩整体的承载能力,从而控制巷道围岩变形破坏,维持巷道围岩的稳定。
4 结 论
1)通过钻孔勘探、地应力原位测量和实验室试验,获得断层区域内的复杂地质构造、岩性和地应力等特征,DF29断层落差33 m,为目前彬长矿区最大揭露断层,最大主应力为水平应力,其值为30.52 MPa,地应力场属于超高应力区。探明了断层破碎区巷道围岩的变形破坏特征,并揭示了其破坏机理。
2)针对断层破碎区巷道围岩所处的复杂地质构造环境,研发了一种可注性好的反应温度低于95 ℃、抗压强度大于40 MPa的矿用复合注浆加固材料。
3)基于现场探测和数值模拟所得巷道围岩的破坏特征,提出了一种以中空注浆锚索为核心的锚注补强支护方法,并优化了支护参数。其现场加固结果表明,该技术能有效维持巷道围岩的稳定。
参考文献(References):
[1] 何满朝,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.HE Manchao,XIE Heping,PENG Suping,et al.Research on rock mechanics of deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
[2]何富连,张广超.深部高水平构造应力巷道围岩稳定性分析及控制[J].中国矿业大学学报,2015,44(3):466-476.HE Fulian,ZHANG Guangchao.Analysis and control of surrounding rock stability of deep roadway with high horizontal tectonic stress[J].Journal of China University of Mining and Technology,2015,44(3):466-476.
[3]王卫军,罗立强,黄文忠,等.高应力厚层软弱顶板煤巷锚索支护失效机理及合理长度研究[J].采矿与安全工程学报,2014,31(1):17-21.WANG Weijun,LUO Liqiang,HUANG Wenzhong,et al.Study on failure mechanism and reasonable length of anchor cable support in coal roadway with high stress and thick layer with soft roof[J].Journal of Mining & Safety Engineering,2014,31(1):17-21.
[4]来兴平,刘小明,曹建涛,等.开采扰动区断层采动活化诱发岩体动态变形模型实验[J].西安科技大学学报,2014,34(6):647-651.LAI Xingping,LIU Xiaoming,CAO Jiantao,et al.Dynamic deformation model experiment of rock mass induced by fault mining activation in mining disturbance area[J].Journal of Xi’an University of Science and Technology,2014,34(6):647-651. [5]吕兆海,来兴平,赵长红,等.断层破碎区煤岩体失稳机制与注浆耦合控制研究[J].华北科技学院学报,2018,15(2):19-25.LYU Zhaohai,LAI Xingping,ZHAO Changhong,et al.Study on instability mechanism of coal and rock mass and grouting coupling control in fault fracture zone[J].Journal of North China Institute of Science and Technology,2018,15(2):19-25.
[6]刘小明,来兴平,陶冰鑫,等.开采扰动区断层水患防治[J].西安科技大学学报,2015,35(6):715-720.LIU Xiaoming,LAI Xingping,TAO Bingxin,et al.Prevention of groundwater hazards due to fault activation in excavation disturbed zone[J].Journal of Xi’an University of Science and Technology,2015,35(6):715-720.
[7]孟慶彬,韩立军,齐彪,等.复杂地质条件下巷道过断层关键技术研究及应用[J].采矿与安全工程学报,2017,34(2):199-207.MENG Qingbin,HAN Lijun,QI Biao,et al.Study and application of key technology for roadway crossing faults under complex geological conditions[J].Journal of Mining & Safety Engineering,2017,34(2):199-207.
[8]张喜传,周玉军,张海波.基于新型注浆材料的工作面过破碎断层措施[J].煤矿安全,2018,49(9):187-193.ZHANG Xichuan,ZHOU Yujun,ZHANG Haibo.Measures of working face passing through broken fault based on new grouting strengthening materials[J].Safety in Coal Mines,2018,49(9):187-193.
[9]张振峰,康红普,姜志云,等.千米深井巷道高压劈裂注浆改性技术研发与实践[J].煤炭学报,2020,45(3):972-981.ZHANG Zhenfeng,KANG Hongpu,JIANG Zhiyun,et al.Study and application of high-pressure splitting grouting modification technology in coalmine with depth more than 1000m[J].Journal of China Coal Society,2020,45(3):972-981.
[10]熊祖强,王凯,丁子文.新型无机注浆材料在大采高工作面过断层注浆加固中的应用[J].煤矿安全,2017,48(4):148-151.XIONG Zuqian,WANG Kai,DING Ziwen.Application of a kind of new type inorganic grouting material in grouting reinforcement of passing through fault at large mining height working face[J].Safety in Coal Mines,2017,48(4):148-151.
[11]管学茂,胡曙光,丁庆军,等.超细水泥基注浆材料性能研究[J].煤矿设计,2001,33(3):28-31.GUAN Xuemao,HU Shuguang,DING Qingjun,et al.Research on properties of superfine cement-based grouting materials[J].Coal Mine Design,2001,33(3):28-31.
[12]郭东明,李妍妍,左志昊,等.低黏度超细水泥浆液配比试验研究[J].煤矿安全,2019,50(5):72-77.GUO Dongming,LI Yanyan,ZUO Zhihao,et al.Experimental study on the ratio of ultra-fine cement slurry with low viscosity[J].Safety in Coal Mines,2019,50(5):72-77.
[13]郭东明,谭霁爽,肖正星,等.超细水泥浆液最优配比及注浆效果研究[J].河南理工大学学报(自然科学版),2017,36(5):1-8,34.GUO Dongming,TAN Jishuang,XIAO Zhengxing,et al.Research on optimal ratio and Grouting Effect of ultra-fine cement slurry[J].Journal of Henan Polytechnic University(Natural Science Edition),2017,36(5):1-8,34.
[14]吴爱祥,于少峰,韩斌,等.超细水泥注浆溶液配比优化及扩散规律研究[J].采矿与安全工程学报,2014,31(2):304-309.WU Aixiang,YU Shaofeng,HAN Bin,et al.Research on the ratio optimization and diffusion law of ultra-fine cement grouting solution[J].Journal of Mining & Safety Engineering,2014,31(2):304-309. [15]SHA F,LI S C,LIU R T,et al.Performance of typical cement suspension-sodium silicate double slurry grout[J].Construction and Building Materials,2019,200:408-419.
[16]馮志强,康红普,韩国强.煤矿用无机盐改性聚氨酯注浆材料的研究[J].岩土工程学报,2013,35(8):1559-1564.FENG Zhiqiang,KANG Hongpu,HANG Guoqiang.Study on inorganic salt modified polyurethane grouting material for coal mine[J].Journal of Geotechnical Engineering,2013,35(8):1559-1564.
[17]吴怀国.矿用高分子注浆加固材料安全性试验研究[J].煤炭科学技术,2013,41(11):53-55.WU Huaiguo.Experimental study on safety of polymer grouting reinforcement materials for mining[J].Coal Science and Technology,2013,41(11):53-55.
[18]刘泉声,康永水,白运强.顾桥煤矿深井岩巷破碎软弱围岩支护方法探索[J].岩土力学,2011,32(10):3097-3104.LIU Quansheng,KANG Yongshui,BAI Yunqiang.Exploration on supporting method of broken soft surrounding rock in deep shaft roadway of Guqiao Coal Mine[J].Rock and Soil Mechanics,2011,32(10):3097-3104.
[19]郭相平,郝登云.深部软岩巷道围岩变形特征及全锚索支护机理[J].中国矿业,2019,28(12):123-127.Guo Xiangping,HAO Dengyun.Deformation characteristics of surrounding rock of deep soft rock roadway and supporting mechanism of full anchor cable[J].China Mining,2019,28(12):123-127.
[20]孟庆彬,韩立军,乔卫国,等.深部高应力软岩巷道断面形状优化设计数值模拟研究[J].采矿与安全工程学报,2012,29(5):650-656.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Numerical simulation of cross-section shape optimization design of deep soft rock roadway under highstress[J].Journal of Mining & Safety Engineering,2012,29(5):650-656.
[21]孟庆彬,韩立军,乔卫国,等.深部高应力软岩巷道变形破坏特性研究[J].采矿与安全工程学报,2012,29(4):481-486.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Research on deformation failure characteristics of the deep high-stress soft rock roadways[J].Journal of Mining & Safety Engineering,2012,29(4):481-486.
[22]孟庆彬,韩立军,乔卫国,等.赵楼矿深部软岩巷道变形破坏机制及控制技术[J].采矿与安全工程学报,2013,30(2):165-172.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.The deformation failure mechanism and control techniques of soft rock in deep roadways in Zhaolou Mine [J].Journal of Mining & Safety Engineering,2013,30(2):165-172.
[23]王连国,陆银龙,黄耀光,等.深部软岩巷道深-浅耦合全断面锚注支护研究[J].中国矿业大学学报,2016,45(1):11-18.WANG Lianguo,LU Yinlong,HUANG Yaoguang,et al.Research on deep-shallow coupled full-section bolting support for deep soft rock Roadway[J].Journal of China University of Mining and Technology,2016,45(1):11-18.
[24]黄耀光,张天军.深部高地应力巷道塑性破坏特征及注浆支护[J].采矿与安全工程学报,2019,36(5):949-958.HUANG Yaoguang,ZHANG Tianjun.Plastic failure characteristics of deep high-stress roadway and grouting support[J].Journal of Mining & Safety Engineering,2019,36(5):949-958.