论文部分内容阅读
针对机器人系统的未知、不确定、时变和非线性特性,在传统误差学习法的基础上,提出一种CMAC在线自学习模糊自适应控制结构,利用模糊推理机产生的分目标学习误差代替反馈控制器的输出信号训练CMAC,使CMAC的学习与系统的实际跟踪过程相适应,避免了控制器的输出产生振荡或进入饱和状态.仿真结果表明这种控制方案实现了对未知不确定非线性机器人系统的高精度实时力/位置控制.