论文部分内容阅读
高压计量仪表识别过程中需要对图像进行二值化操作,然而拍摄的仪表图像多出现光照不均和数字重影现象,导致传统方法对仪表图像的二值化困难。为此,提出一种基于卷积神经网络的二值化方法,用于对复杂光照下含数字重影的仪表图像二值化。该网络使用的数据集为真实环境下的仪表图像,首先对输入的图像进行降维提取特征,然后反卷积重建图像前景,最后输出二值图。将设计的网络与传统的二值化方法进行对比,实验结果表明,经该网络训练得到的二值图数字清晰且无重影,且测得的交并比(IoU)平均值为95.12,与样本标签图像的相似度最高,