基于特征选择和概率神经网络的心脏病预测

来源 :现代电子技术 | 被引量 : 0次 | 上传用户:kongfuhei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面对我国心血管疾病患病人数的不断增长,针对心血管疾病的预测,利用监护系统获得医疗数据,寻找出合适的疾病预测方法,及时发现并解决健康问题,创新性地提出一种基于概率神经网络和遗传算法的心脏病预测模型.其中,使用概率神经网络作为分类器,遗传算法进行特征选择.模型分为三个阶段:首先,采用标准的UCI数据库中心脏病数据集进行预处理;然后,提供一种基于遗传算法的包裹式特征选择方法来选择显著特征;最后,使用概率神经网络训练得到预测模型.实验结果表明,相较于其他模式识别方法,提出的模型使用更少的特征取得了更高的准确率.通过特征选择算法可以获得显著特征,利用多种机器学习算法在经过特征选择后形成的新数据集上训练,精度也普遍得到提升.
其他文献
为了满足半导体激光器(LD)对电流源高稳定性、低噪声的性能要求,文中基于负反馈原理设计一种可调节低噪声恒流源电路.该电路使用带隙基准电压源AD780BN提供低噪声、低温漂的基准电压,配合多路复用器ADG1606的选择功能,由低噪声运放LT1677构成的负反馈恒流驱动电路通过JFET将电压转换成电流,经过JFET和BJT构成的调整网络输出稳定的电流,实现了稳定的多电流输出.实际电路测试结果表明:该恒流源电路在3.8~5.5 V的输入电压范围内,输出电流稳定度在0.007%~0.029%之间;在电流调控模块控
回环检测是视觉SLAM中的一个重要模块,成功检测出回环能够有效减少环境地图生成过程中的累积误差.针对传统方法主要利用人工设计特征,具有对光照变化非常敏感等问题,将深度学习算法运用于回环检测中,提出一种基于卷积神经网络的回环检测算法.利用预训练的卷积神经网络模型VGG16提取图像卷积特征,选取网络末端的池化层作为图像的全局特征表示,并通过感知哈希算法判断特征相似性,验证回环.从准确性和运算时间上在New college数据集上评估该算法的性能.实验结果表明,相对于传统算法,提出的算法有着更高的准确度和速率,