论文部分内容阅读
为了最大限度地利用风能,更好地利用风速,提出了基于人工神经网络的一种新的最大功率点跟踪(Maximum Power Point Tracking,MPPT)与桨距角控制相结合的控制策略,以解决以往控制策略工作量大、过程繁杂等问题.该控制策略允许低于额定风速时发电机工作在最佳转速得到最大功率,高于额定风速时恒功率输出;整个过程由一个人工神经网络控制器来实现.为此,在Matlab环境下,建立了双馈异步风电机组的仿真模型来开展分析.分析结果表明,风速在额定值附近大范围变化时,采用最大功率点跟踪(MPPT)与桨距角控制相结合的控制策略,能够实现最大功率快速而精确的跟踪和恒功率的输出,且具有很好的动态特性和快速跟踪特性.“,”To utilize the most wind power and the wind at different speed, a novel coordinated control strategy of Maximum Power Point Tracking(MPPT) -Pitch angle is developed on the basis of Neural Network(ANN),which can solve the deficiency in previous control strategies,such as heavy workload,complicated process etc. In this strategy,generator can always work at the optimum speed and produce the maximum output when the wind speed is below the rated wind speed, and while the speed is higher than the rated speed,it can output constant power. An artificial neural network controller realize this process. Based on Matlab,a simulation model of doubly-fed induction generator is established. It is shown that even the wind speed fluctuates a-round the rated wind speed in a large magnitude,this strategy has good dynamic and fast tracking characteristics to achieve fast and accurate tracking and output constant power.