论文部分内容阅读
外观、尺度变化是行人跟踪的难点,解决行人多尺度跟踪问题是增强算法实用性的关键因素.在KCF(kernel correlation filter)算法的基础上,本文采用多个相关滤波器(如头部、臀部)辅助身体躯干滤波器的匹配跟踪.通过获得图像帧(除第一帧外)与初始帧的行人头部和臀部之间的距离变化率来缩放搜索面积,解决目标定位不准确和时间浪费的问题;通过调整目标框的尺寸,解决目标模板逐渐包括背景特征或者逐渐被局部特征取代的问题.在VOT2016的18个有明显尺度变化的行人场景视频序列上进行了测试,实验结果