论文部分内容阅读
双目立体视觉和自组织可增长特征映射图GSOM(Growing Self-organizing Map)相结合的机器人地图构建方法首先利用双目立体摄像机采集图像,借助双目立体视觉处理技术,将采集到的图像信息转化成神经网络的训练样本;然后利用GSOM的地图绘制算法,通过不断增加新的神经元实现网络规模的增长,用441个SOM神经元便表示了2000个样本点的环境特征信息的拓扑地图,体现了对输入样本分布的逼近特性;实验结果表明双目立体视觉和GSOM相结合的机器人自主地图构建方法可行,并表现出类似生物的自主智能行为。