“探索三角形全等的条件—AAS”案例片段及反思

来源 :数学学习与研究 | 被引量 : 0次 | 上传用户:wc836952
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  片段一:情境引入
  如图:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.△ABC与△DEF全等吗?为什么?
  师:好的,谁能把我们刚才的发现,用简洁的文字语言概括一下呢?
  生1:如果两个三角形的两个角分别相等且其中任意一条边相等时,那么这两个三角形全等.
  师:任意这个词用得很特别嘛,为什么说是任意呢?
  生1:因为我们知道两角及夹边分别相等的两个三角形全等,现在我们又发现,不是夹边时,也可以判断两个三角形全等,所以我就说任意.
  师:看来这位同学在用词上已经越来越讲究了嘛,越来越“严谨”了嘛,大家同意他的这个“任意”吗?
  生2:我不同意,我们知道要想说明一个命题是假命题,我们只需要举一个反例就可以了,现在,我能够画出反例,说明他的这个描述不正确,不能用“任意”.
  师:好好好,请你在黑板上展示你的想法给大家看.
  这时他带着自己的本子在黑板上画下了他的反例,并向同学们做了详细的解释.(图略)
  生3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,AC=DE.但我们可以很直观地看出来△ABC与△DEF不全等.
  同学们不禁发出了啧啧的赞叹声,并报以热烈的掌声.
  师:那你能用自己的语言重新来概括一下我们刚才的发现吗?
  生3:反正不能说任意一边相等,题目告诉了这两条边相等,而且这两条边所对的角也相等(她看着投影上的图形边想边说).
  我继续追问到:那能不能更加严谨地来描述一下这两条边呢?
  生4:老师,可不可以说是两个相等的角所对的边也相等呢?
  师:你觉得呢?
  生4:可以.(她自己都笑了)
  师:谁能用一句话来概括一下我们刚才的发现?
  生5:两个三角形的两个角分别相等,且其中一对相等的角所对的边也相等,那么这两个三角形全等.
  师:大家同意他的表述吗?
  众生:同意!!!(雷鸣般的掌声再次响起.)
  师:这位同学说得真好,真棒!他的表达已经几乎和教材当中概括出来的结论一模一样了,这种判断两个三角形全等的方法是利用ASA得到的一个结论,我们称之为ASA的一个推论,我们可以把它简称为?
  众生:AAS!
  反思:在探究新知的过程中,如果能给学生充分的时间,让学生自己去组织语言,那么对于新知的学习会起到很大的帮助作用,同时在无形当中培养了学生自主概括、归纳的能力,对数学语言的使用也会更加严密、谨慎,有利于学生的长远发展.
  片段二:例题教学
  例已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′中BC和B′C′边上的高.求证:AD=A′D′.
  师:能用一句话来概括这道题目带给我们的一个结论吗?
  生1:两个三角形全等的话,他们的高也相等.
  生2:不对,每个三角形有三条高呢,没有说清楚谁和誰等.
  生3:两个三角形全等时,在对应位置上的高相等.
  师:说得有道理,模仿全等三角形的性质,我们可以更简洁地概括为?
  生4:全等三角形,对应高相等.
  师:语言简练、表达准确,说得非常好!
  师:三角形中的三条特殊的线段除了高还有什么呢?
  众生:中线、角平分线!
  师:你能猜测出一些类似的结论吗?
  生5:全等三角形,对应中线相等.全等三角形,对应角平分线相等.
  师:说得非常好,我们能证明刚才这位同学的猜测吗?(同时,我将“全等三角形,对应中线相等”写在了黑板上.)
  这时下面同学已经看着投影上面的图,开始比画着在证明了.有位同学,没有参与讨论,而是在很活跃、很兴奋地向我举手示意,我便点头让他起来回答问题.
  生6:这是一道文字命题的证明,首先,我们要写出已知、求证并画出图形,然后才进行证明.
  师:说得非常好,我们在上一单元刚刚学习了“证明”,其中遇到文字命题的证明时,我们是不是按照这样的步骤进行的呢?
  这时大多数同学才回过神来,掌声再次响起.于是,大多数同学便开始了如何写已知、求证、画图、证明的讨论,这时候一个同学举手回答了这个问题.
  生7:只需要把这道目改编一下就可以了,已知:如图,△ABC≌△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′中BC和B′C′边上的中线.求证:AD=A′D′.
  同学们情不自禁的掌声又一次响起,同时,我又对这位同学的表现进行大力表扬和肯定.
  反思:真的不能小瞧了每一个学生,起来回答这个问题的学生是一个很机灵的学生,他能够灵活地去模仿刚刚的那道题,只需要做小小的改动即可,然而有的同学却是只盯着黑板上我写下的“全等三角形,对应中线相等”.所以,在课堂上真的要关注到每一个学生,不能低估了每一个学生.
其他文献
【摘要】 随着社会不断发展,对人才的要求越来越高. 数学是高中学习中的重要学科,要求学生能够利用所学知识,将“未知”问题分析成“已知”条件,要求学生拥有清晰的数学思维,掌握正确学习技巧. 高中数学解题难度不断加大,使学生和老师的压力也不断增加. 通过在高中数学解题中运用“构造法”,培养学生学习数学的兴趣和信心,建立清晰的解题思路,让学生在高中数学解题中发挥出创造性.  【关键词】 构造法;高中数学
便携式短波红外光谱分析仪(PIMA)可以在野外快速识别细粒矿物或者鉴定重要的化学组分。文章介绍了PIMA的性能、特点、工作方法和应用手段以及实例,使读者能对短波红外光谱矿物测
畜禽养殖废弃物资源化和无害化,事关农村居民居住环境的改善,关系农村能源革命,关系能不能不断改善土壤地力、治理好农业面源污染,是一件利国利民利长远的大好事。陕西省宝鸡市畜
排列研究的是事物在某种给定模式下所有可能的配置數目问题,因此,解决排列问题的基本思路就是:先选之,再排之,下面我们就一起来看看到底要选什么?怎样排?