论文部分内容阅读
基于迭代自组织数据聚类阈值的脉冲耦合神经网络的图像分割算法改进了传统脉冲耦合神经网络在图像分割中由于不恰当的参数选择而导致图像欠分割和过分割的问题。基于迭代自组织数据聚类阈值的脉冲耦合神经网络图像分割算法无需确定参数和循环次数,也不需要用特定原则确定循环结束的条件,只需利用图像中的每个像素点的灰度值进行聚类,然后利用改进的迭代自组织数据算法确定图像的初始聚类数目以及聚类中心,并以此作为脉冲耦合神经网络的最佳阈值,一次点火过程自动完成分割。实验结果表明,这种算法具有较好的分割结果和分割速度,提高了分割