论文部分内容阅读
针对趋势相关(两基因在其表达水平随时间上升与下降的变化趋势上相关)关系在重建基因调控网络中十分重要却尚未被挖掘利用的问题,提出了几何模式动态贝叶斯网络(Gp-DBN)方法.Gp-DBN将每个基因的表达数据转换为一个几何模式,依据几何模式确定潜在的调控子和调控时滞,并通过推理这些几何模式之间的相关关系来发现基因间的调控关系.该方法解决了挖掘具有趋势相关的基因调控关系的问题,能够很大程度地提高重建的基因调控网络的性能.对Yeast和E. coli基因数据的实验结果表明无论是在无先验知识还是在有先验知识时