论文部分内容阅读
通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐,但随着通用变频器应用范围的扩大,暴露出一些问题。针对这些问题,本文进行了分析并提出了对策。
一、谐波问题及其对策
通用变频器的主电路形式一般由整流部分、逆变部分和滤波部分组成。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用:
1、增加变频器供电电源内阻抗。通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。所以最好选择短路阻抗大的变压器。
2、安装电抗器。安装电抗器实际是从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。
3、变压器多相运行。通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°。如Y-△、△-△组合的两个变压器构成相当于12脉波的效果,则可减小低次谐波电流28%,起到谐波抑制作用。
4、调节变频器的载波比。只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。
5、专用滤波器。专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同但相位正好相反的电流,通到变频器中,吸收谐波电流。
二、负载匹配问题及其对策
生产机械的转矩特性大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。
1、恒转矩负载。恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。而恒转矩负载又分为摩擦类负载和位能式负载量两种。
2、风机泵类负载。风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可,如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题。
风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。而泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器,且变频器在功能设定时要针对上述问题进行单独设定。
3、恒功率负载。恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。就一定的速度变化范围而言的,利用变频器驱动恒功率负载时,通常考虑在某个转速点以下采用恒转矩调速方式,在高于该转速点时才采用恒功率调速方式。通常将该转速点称为基频,而该点对应的电压为变频器输出额定电压。
三、发热问题及对策
变频器的发热是由内部的损耗产生的。对变频器进行散热,通常采用:
1、采用风扇散热。变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,就立即停止变频器运行。
2、降低安装环境温度。通用变频器的环境运行温度一般要求在-10℃到-50℃之间,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。对于这个问题可采取两种方法:一是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃到+20℃之间;二是变频器的安装空间要满足变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗时,必须通过正常的选型来避免此类现象的发生。
对于风机泵类负载,以三菱变频器FR-F540为例,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短。
对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的升温。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率為18.5kW,可选择FR-A540-22k变频器。
通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。
(作者单位:黑龙江龙煤矿业集团有限责任公司)
一、谐波问题及其对策
通用变频器的主电路形式一般由整流部分、逆变部分和滤波部分组成。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用:
1、增加变频器供电电源内阻抗。通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。所以最好选择短路阻抗大的变压器。
2、安装电抗器。安装电抗器实际是从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。
3、变压器多相运行。通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°。如Y-△、△-△组合的两个变压器构成相当于12脉波的效果,则可减小低次谐波电流28%,起到谐波抑制作用。
4、调节变频器的载波比。只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。
5、专用滤波器。专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同但相位正好相反的电流,通到变频器中,吸收谐波电流。
二、负载匹配问题及其对策
生产机械的转矩特性大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。
1、恒转矩负载。恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。而恒转矩负载又分为摩擦类负载和位能式负载量两种。
2、风机泵类负载。风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可,如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题。
风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。而泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器,且变频器在功能设定时要针对上述问题进行单独设定。
3、恒功率负载。恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。就一定的速度变化范围而言的,利用变频器驱动恒功率负载时,通常考虑在某个转速点以下采用恒转矩调速方式,在高于该转速点时才采用恒功率调速方式。通常将该转速点称为基频,而该点对应的电压为变频器输出额定电压。
三、发热问题及对策
变频器的发热是由内部的损耗产生的。对变频器进行散热,通常采用:
1、采用风扇散热。变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,就立即停止变频器运行。
2、降低安装环境温度。通用变频器的环境运行温度一般要求在-10℃到-50℃之间,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。对于这个问题可采取两种方法:一是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃到+20℃之间;二是变频器的安装空间要满足变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗时,必须通过正常的选型来避免此类现象的发生。
对于风机泵类负载,以三菱变频器FR-F540为例,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短。
对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的升温。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率為18.5kW,可选择FR-A540-22k变频器。
通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。
(作者单位:黑龙江龙煤矿业集团有限责任公司)