论文部分内容阅读
针对目前网络报警信息融合方法仅以单时间点为处理单元,无法适应网络攻击逐渐呈现出的隐蔽性强、持续时间长等特点,提出一种基于时间对抗的网络报警深度信息融合方法。面对多源异构报警数据流,首先采集并保存当前一个较长时间窗口内的报警信息,然后利用基于滑动窗口的流聚类算法对报警信息进行聚类,最后引入窗口衰减因子对聚类后的报警进行深度融合。真实数据的实验结果显示,与基本DS证据理论(Basic-DS)和指数加权DS证据理论(EWDS)融合方法方法相比,该方法有较高的检测率和较低的误检率,但因为采用了更长的时间窗口