论文部分内容阅读
相比Mel倒谱系数(MFCC),基于能量偏差移除和幂函数的声音特征(PNCC)具有较强的抗噪能力。首先,将PNCC和MFCC组成混合特征矩阵,在隐马尔科夫模型(HMM)、高斯混合模型(GMM)和支持向量机(SVM)下对混合特征和传统特征做对比实验。其次,先选取实验结果较好的HMM模型过滤测试样本,再分别选取GMM和SVM做二次分类,并测试两种双层模型的识别正确率。结果表明在噪声环境下使用HMM/GMM双层模型和混合特征可取得较好的识别效果。