论文部分内容阅读
以小数据集为样本进行卷积神经网络模型的训练过程,容易出现所得到的神经网络模型泛化能力不足的问题。传统的处理方法大都通过数据增强的方式来提高训练数据的样本总数。本文选取多个网络模型进行对比实验,验证不同神经网络在训练过程中是否使用数据随机增强方式的模型识别准确率提高的效果,为如何选取小数据集样本训练神经网络提供参考。