论文部分内容阅读
为克服最小二乘支持向量机(LSSVM)依赖人为经验选择学习参数的不足,利用遗传优化算法(GA)选择LSSVM惩罚因子C和核函数参数σ2,构建GA-LSSVM年径流预测模型,并构建LSSVM、GA-BP和传统BP模型作为对比,以云南省河边水文站年径流预测为例进行实例研究,利用实例前30 a和后22 a资料分别对各模型进行训练和预测。结果表明:GA-LSSVM模型对实例后22 a年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为3.13%、8.66%,预测精度优于LSSVM、GA-BP和传统BP模型。G