An orthogonal basis for non-uniform algebraic-trigonometric spline space

来源 :高校应用数学学报:英文版(B辑) | 被引量 : 0次 | 上传用户:poco666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonal. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic-trigonometric spline space in order to r
其他文献
In this paper, an exponential inequality for the maximal partial sums of negatively superadditive-dependent(NSD, in short) random variables is established. By u
在这份报纸,由一条公理的途径,我们建议凸的风险为公事包测量的 comonotonic subadditivity 和 comonotonic 的概念,它是歌和 Yan (2006 ) 介绍的延期。为公事包的这些新介绍风
In this paper,we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential e
Let{fX(t),t≧0}be a centered stationary Gaussian process with correlation r(t)such that 1-r(t)is asymptotic to a regularly varying function.With T being a nonne
For the large sparse saddle point problems,Pan and Li recently proposed in [H. K. Pan,W. Li,Math. Numer. Sinica,2009,31(3): 231-242] a corrected Uzawa algorithm