论文部分内容阅读
文本聚类是指自动地将文本集合分组为不同的类别,应用非常广泛.研究发现,传统的TFIDF文本分类方法存在很多的不足,针对这些不足提出改进.通过使用循环迭代算法根据特征词在类内和类间的分布情况不断优化特征词的选取,获得不断改进的分类.采用支持向量机分类器对文本分类.通过对大批量的数据集测试,该算法显示出较好的特征选择效果,能够有效地提高分类精度.