论文部分内容阅读
本文发展了一种解叶栅全三维粘性反问题的新的数值方法.基于非正交曲线坐标与相应的非正交速度分量下完全守恒型的Navier-Stokes方程,全三维反问题规定叶片表面的无量纲压力分布反求叶型。计算中叶片表面的边界条件采用一种特殊的方式来处理,即一方面强加给定的压力分布条件,另方面叶面的几何位置在迭代过程中又是可移动的,其移动速度将与Navier—Stokes方程在当地的解联系起来,从而形成一种解定常问题的新的不定常过程.试算证明了本文方法的可行性。
In this paper, we develop a new numerical method to solve the full three-dimensional viscous inverse problem of cascades. Based on the completely conserved Navier-Stokes equations with non-orthogonal curvilinear coordinates and corresponding nonorthogonal velocity components, the full three-dimensional inverse problem regulates the surface of the blade The non-dimensional pressure distribution of the inverted leaf type. The calculation of the boundary conditions of the middle blade surface is handled in a special way that imposes a given pressure distribution on the one hand and on the other hand the geometrical position of the blade is again movable during the iteration and its speed of movement will be proportional to Navier -Stokes equations in the local solution, and thus form a new and unsteady process for solving the steady-state problems.The test proves the feasibility of the method in this paper.