论文部分内容阅读
用无穷维动力系统的方法研究了Belousov Zhabotinsky化学反应系统的长时间行为.在齐次边界条件与非齐次边界条件下证明了系统在其不变流形上的全局吸引子为系统在该不变流形内的唯一平衡点,从而得到了该系统的渐近稳定性.
The long-term behavior of the Belousov Zhabotinsky chemical reaction system is studied by using an infinite dimensional dynamical system. The global attractor of the system on the invariant manifold is proved to be the system in homogeneous or non-homogeneous boundary conditions The only equilibrium point in the manifold is obtained, and the asymptotic stability of the system is obtained.