论文部分内容阅读
为了提高多模医学图像或多聚焦图像的融合性能,结合shearlet变换能够捕捉图像细节信息的性质,提出了一种基于shearlet变换的图像融合算法。首先,用shearlet变换将已精确配准的两幅原始图像分解,得到低频子带系数和不同尺度不同方向的高频子带系数。低频子带系数使用改进的加权融合算法,用平均梯度来计算加权参量,以此来改善融合图像轮廓模糊度高的问题,高频子带系数采用区域方差和区域能量相结合的融合规则,以得到丰富的细节信息。最后,进行shearlet逆变换得到融合图像。结果表明,此算法在主观视觉效