基于威胁情报的自动生成入侵检测规则方法

来源 :计算机工程与设计 | 被引量 : 0次 | 上传用户:asdfghjkc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统的IDS规则更新方法基本只能提取已知攻击行为的特征,或者在原有特征的基础上寻找最佳的一般表达式,无法针对当前发生的热点网络安全事件做出及时更新,提出基于威胁情报的自动生成入侵检测规则方法.文章分类模块使用Word2Vec进行特征提取,利用AdaBoost算法训练文章分类模型获取威胁情报文本;定位IoC所在的段落并使用条件共现度算法进行特征扩展和子文档重构,使用深度学习算法ResLCNN提取文章中的IoC数据;将所提取的IoC数据转化为入侵检测规则.通过对最新恶意代码流量数据进行测试,该方法对新发现的恶意代码的检测能力优于现有的入侵检测系统,能够提升计算机网络应对网络安全热点事件的能力.
其他文献
为了提高摄影图像的清晰度,需要对摄影图像进行模糊去重处理.采用当前方法对模糊图像进行去重处理时,存在去重效率低和去重效果差的问题.提出考虑局部自相似性的图像模糊去重方法,在图像退化数学模型的基础上通过数值约束和梯度约束实现摄影图像的边缘提取,利用摄影图像的局部自相似特性,建立训练库映射的一阶回归模型,在一阶回归网络模型的基础上通过字典训练实现摄影图像的模糊去重处理,在较短的时间内提高摄影图像的清晰度.仿真结果表明,所提方法的去重效率高、去重效果好.
特征匹配是从图像恢复三维模型的关键步骤之一.为有效地提高三维重建的质量,提出一种面向三维重建的增强运动一致性与引导扩散特征匹配算法.首先在基于网格的运动统计算法基础上,通过增加阈值 β,提出一种增强运动一致性概念,增强真假匹配点的判断条件,避免高相似特征点的误匹配,提高了初始匹配点的正确率;然后结合RANSAC算法进行特征点匹配优化,过滤掉异常值,进一步提高特征点匹配的准确性;最后将引导匹配和运动一致性相结合,提出一种引导扩散概念,减少了集中分布在图像局部的可能性,进而提高特征点匹配数量和三维模型的稳定性
针对多阈值图像分割中阈值求解效率低、精度不足的问题,提出了一种基于改进状态转移算法的图像多阈值分割方法.改进状态转移算法的伸缩变换采用一种方差自适应的正态分布策略,增强了算法在初期包含全局最优解的可能性,以及算法在后期的收敛性.另一方面,通过精英解集加权和来确定邻域中心,增加了群体间的交流,能充分利用精英解集间的信息实现启发式搜索,同时“贪婪准则”最优解保留机制保证了算法的收敛.实验表明,相比其它算法,上述方法在收敛效率和精度方面有显著优势.
针对视障人士出行辅助中可通行区域地面障碍物实时检测问题,提出一种基于RGB-D和惯性传感器融合的地面障碍物检测技术.首先建立地面障碍物空间模型,并融合惯性传感器参数计算相机倾角以校正地面障碍物世界坐标;其次针对视障人士实际使用场景和需求,使用阈值分割算法将深度图像中距离较远的检测像素去除,并将深度图划分4个区域,通过融合惯性传感器数据实现ROI的动态划分;最后通过改进RANSAC算法设计了基于地面区域生长的障碍物检测算法,并采集真实数据进行实验验证.实验结果表明,所提技术的准确率和召回率分别达到90.87
垃圾分类是保护生态环境、促进经济发展的有效措施,利用深度学习进行垃圾分类已成为当前学术界和工业界的研究热点.传统垃圾分类主要由人工进行分拣和分类,存在劳动强度大、分选效率低、工作环境差等缺点,急需智能化、自动化的分类方法来替代.近年来研究人员已经开始初步探索利用深度学习技术进行垃圾分类并提出一些有效的方法.从方法、数据集和研究方向等方面分析深度学习垃圾分类方法的研究现状,介绍不同深度学习模型在垃圾分类中的应用和发展,研究基于ResNet方法、基于DenseNet方法、基于单阶段目标检测方法和基于卷积神经网