论文部分内容阅读
目前复杂网络节点重要性识别算法主要集中在无权、无向网络上不能全面地描述真实世界复杂网络的情况。大部分中心性度量方法仅仅考虑单一指标,忽略了节点出度与入度的差异,且忽视了权重的重要性。基于有向加权复杂网络,综合考虑节点出度与入度的差异,以及权值在真实网络中的实际重要性,提出了一种基于出度、入度和权值的中心节点识别算法——cw-壳分解算法。为了验证该算法的有效性,利用W-SIR传播模型在真实复杂网络上进行病毒传播仿真实验,结果表明cw-壳分解方法能够有效地对节点进行分级排序,识别出具有高扩散能力的节点。