论文部分内容阅读
针对线性近邻传递(LNP)分类算法中,由于图像过大时计算复杂度高,以及近邻数目选择不当导致图像分类结果不精确的问题,提出了基于局部聚类的自适应LNP分类算法。该方法对LNP分类算法的改进主要体现在两方面,首先运用quick shift进行局部聚类,得到点簇集,以此点簇集作为建图节点,达到缩小矩阵规模的目的;其次,采用测地距离和欧氏距离之间的关系来动态确定每个点的近邻数。实验结果表明,所提方法在得到较好的分类结果的同时,也极大地缩短了运行时间,提高了效率。