论文部分内容阅读
摘 要:新一轮人工智能热潮至少有两点独特之处:一是得益于计算能力和训练数据的巨大增长,机器学习取得实质性突破,促使人工智能的大规模应用成为可能;二是决策者终于给予了密切的关注。当前,人工智能引发了一系列严峻的政策挑战,包括公正与平等、武力使用、安全与认证、隐私和权力、税收和失业以及机构配置与专业知识、投资和采购、消除归责的障碍、人工智能的心理模型等跨领域问题。人工智能末日论反映了人类对于人工智能等拟人化科技的特殊恐惧,在可预见的未来并不会真实发生。相反,对人工智能末日论投入过多的关注和资源,可能会分散决策者对于人工智能更直接的危害和挑战的注意力,进而阻碍有关人工智能对当前社会影响的研究。
关键词:人工智能;政策挑战;机器学习;人工智能末日论
1 该文原载于《加州大学戴维斯分校法律评论》(UC Davis Law Review’s)2017年第51卷第2期。感谢作者对译事的慷慨授权。摘要和关键词由译者整理添加。
2 参见Cade Metz, In a Huge Breakthrough, Google’s AI Beats a Top Player at the Game of Go, Wired, Jan. 27,2016。报道称经过几十年的努力,谷歌的人工智能终于在围棋游戏中击败了人类顶级选手。围棋是一款有着2500年历史,比象棋更为复杂的考验策略和直觉能力的游戏。
3 参见Cathy O’Neil,Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Crown,2016,p.27(作者将这种算法与大规模杀伤性武器相比较,认为两者都将带来恶性循环);Julia Angwin,et al., Machine Bias, Propublica, May 23, 2016(文章探讨了算法在生成风险评估指数时所犯的错误)。
1 参见Martin Ford, Rise of the Robots: Technology and the Threat of a Jobless Future, Basic Books,2015:p.xvi(该书预测,机器的角色将由工人的工具向工人本身进化)。
2 参见James Barrat, Our Final Invention: Artificial Intelligence and the End of the Human Era, Thomas Dunne Books,2013:p.5(该书作者认为,“人类将与这个问题斗争到底”)。
3 See Batya Friedman,Helen Nissenbaum, “Bias in Computer Systems”, in ACM Transactions on Info. Sys.,1996,14,p.330.
4 参见Harley Shaiken, A Robot Is After Your Job: New Technology Isn’t a Panacea, N.Y. Times, Sept. 3, 1980。有关机器人取代人类工作岗位的时间表,请参见:Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016。
5 See Selmer Bringsjord,et al., Creativity, the Turing Test, and the (Better) Lovelace Test, in Minds and Machines,2001,11,p.5;Peter Stone,et al.,Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.50.
6 参见Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.50-51; Will Knight, Facebook Heads to Canada for the Next Big AI Breakthrough, MIT Tech. Rev.,Sept. 15, 2017(該文介绍了与加拿大有关的人工智能领军人物以及技术突破)。
7 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.14; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.6.
8 See Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016.
9 不过,肯尼迪总统发表了一篇关于“高效和强有力的政府领导”必要性的演讲,以回应“自动化问题”。参见John F. Kennedy, Remarks at the AFL-CIO Convention,June 7,1960。
10 See Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016. 11 See Ted Cruz, Sen. Cruz Chairs First Congressional Hearing on Artificial Intelligence, Press Release, Nov. 30, 2016; The Transformative Impact of Robots and Automation: Hearing Before the J. Econ. Comm.,114th Cong.,2016.
1 See National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.12.
2 See Iina Lietzen, Robots: Legal Affairs Committee Calls for EU-Wide Rules, European Parliament News, Jan.12,2017; Japan Ministry of Econ., Trade and Indus., Robotics Policy Office Is to Be Established in METI, July 1, 2015.
3 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
4 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
5 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.25.
6 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
7 参见Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.6-9。最初,学界区分“弱人工智能(weak AI或narrow AI)”和“强人工智能(strong AI)”的概念,前者主要是解决单一问题的智能,如下棋;而后者则是能够像人类一样解决所有问题的智能。今天,强人工智能的概念已经让位于“通用人工智能(artificial general intelligence,AGI)”的概念,指的能够执行不止一个领域的任务但并不需要解决所有认知任务的智能。
8 See National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.8.
1 See Harry Surden, “Machine Learning and Law”, in Wash. L. Rev.,2014,89,p.88.
2 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
3 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.14-15; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,pp.9-10.
4 有一些私人机构和公共研究室对于人工智能也十分敏感,包括艾伦人工智能研究所(Allen Institute for AI)和斯坦福研究所(Stanford Research Institute,简称“SRI”)。
5 参见Jordan Pearson,Uber’s AI Hub in Pittsburgh Gutted a University Lab — Now It’s in Toronto, Vice Motherboard,May 9,2017[报告担心Uber公司将会成为一家“从公共机构吸取营养(并由纳税人资助研究)的寄生虫”]。
6 参见Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation,W. H. Freeman and Company,1976,pp.271-272(该文探讨了资助人工智能研究的资金来源)。
7 参见Vinod Iyengar, Why AI Consolidation Will Create the Worst Monopoly in U.S.History, Techcrunch,Aug.24, 2016.(文章分析了這些主要的科技公司是如何收购那些具有前途的人工智能初创公司的);Quora, What Companies Are Winning the Race for Artificial Intelligence?, Forbes, Feb. 24,2017,当然,也有一些致力于人工智能民主化的努力,包括资金充裕但非营利性的机构OpenAI。 8 See Clay Dillow, Tired of Repetitive Arguing About Climate Change, Scientist Makes a Bot to Argue for Him, Popular Sci.,Nov. 3, 2010.
9 See Cognitive Assistant that Learns and Organizes, SRI INT’L,http://www.ai.sri.com/project/CALO(2017年10月18日访问)。
1 See Ryan Calo, “Robotics and the Lessons of Cyberlaw”, in Calif. L. Rev.,2015,103,p.532.
2 See Matthew Hutson, Our Bots, Ourselves, Atlantic,Mar.3,2017.
3 See “Ethics and Governance of Artificial Intelligence”, Mass. Inst. of Tech. Sch.of Architecture
关键词:人工智能;政策挑战;机器学习;人工智能末日论
1 该文原载于《加州大学戴维斯分校法律评论》(UC Davis Law Review’s)2017年第51卷第2期。感谢作者对译事的慷慨授权。摘要和关键词由译者整理添加。
2 参见Cade Metz, In a Huge Breakthrough, Google’s AI Beats a Top Player at the Game of Go, Wired, Jan. 27,2016。报道称经过几十年的努力,谷歌的人工智能终于在围棋游戏中击败了人类顶级选手。围棋是一款有着2500年历史,比象棋更为复杂的考验策略和直觉能力的游戏。
3 参见Cathy O’Neil,Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Crown,2016,p.27(作者将这种算法与大规模杀伤性武器相比较,认为两者都将带来恶性循环);Julia Angwin,et al., Machine Bias, Propublica, May 23, 2016(文章探讨了算法在生成风险评估指数时所犯的错误)。
1 参见Martin Ford, Rise of the Robots: Technology and the Threat of a Jobless Future, Basic Books,2015:p.xvi(该书预测,机器的角色将由工人的工具向工人本身进化)。
2 参见James Barrat, Our Final Invention: Artificial Intelligence and the End of the Human Era, Thomas Dunne Books,2013:p.5(该书作者认为,“人类将与这个问题斗争到底”)。
3 See Batya Friedman,Helen Nissenbaum, “Bias in Computer Systems”, in ACM Transactions on Info. Sys.,1996,14,p.330.
4 参见Harley Shaiken, A Robot Is After Your Job: New Technology Isn’t a Panacea, N.Y. Times, Sept. 3, 1980。有关机器人取代人类工作岗位的时间表,请参见:Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016。
5 See Selmer Bringsjord,et al., Creativity, the Turing Test, and the (Better) Lovelace Test, in Minds and Machines,2001,11,p.5;Peter Stone,et al.,Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.50.
6 参见Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.50-51; Will Knight, Facebook Heads to Canada for the Next Big AI Breakthrough, MIT Tech. Rev.,Sept. 15, 2017(該文介绍了与加拿大有关的人工智能领军人物以及技术突破)。
7 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.14; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.6.
8 See Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016.
9 不过,肯尼迪总统发表了一篇关于“高效和强有力的政府领导”必要性的演讲,以回应“自动化问题”。参见John F. Kennedy, Remarks at the AFL-CIO Convention,June 7,1960。
10 See Louis Anslow, Robots Have Been About to Take All the Jobs for More than 200 Years, Timeline,May 16, 2016. 11 See Ted Cruz, Sen. Cruz Chairs First Congressional Hearing on Artificial Intelligence, Press Release, Nov. 30, 2016; The Transformative Impact of Robots and Automation: Hearing Before the J. Econ. Comm.,114th Cong.,2016.
1 See National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.12.
2 See Iina Lietzen, Robots: Legal Affairs Committee Calls for EU-Wide Rules, European Parliament News, Jan.12,2017; Japan Ministry of Econ., Trade and Indus., Robotics Policy Office Is to Be Established in METI, July 1, 2015.
3 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
4 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
5 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.25.
6 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
7 参见Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.6-9。最初,学界区分“弱人工智能(weak AI或narrow AI)”和“强人工智能(strong AI)”的概念,前者主要是解决单一问题的智能,如下棋;而后者则是能够像人类一样解决所有问题的智能。今天,强人工智能的概念已经让位于“通用人工智能(artificial general intelligence,AGI)”的概念,指的能够执行不止一个领域的任务但并不需要解决所有认知任务的智能。
8 See National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,p.8.
1 See Harry Surden, “Machine Learning and Law”, in Wash. L. Rev.,2014,89,p.88.
2 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,p.51.
3 See Peter Stone,et al., Artificial Intelligence and Life in 2030: Report of the 2015 Study Panel,2016,pp.14-15; National Science and Technology Council, Preparing for the Future of Artificial Intelligence,2016,pp.9-10.
4 有一些私人机构和公共研究室对于人工智能也十分敏感,包括艾伦人工智能研究所(Allen Institute for AI)和斯坦福研究所(Stanford Research Institute,简称“SRI”)。
5 参见Jordan Pearson,Uber’s AI Hub in Pittsburgh Gutted a University Lab — Now It’s in Toronto, Vice Motherboard,May 9,2017[报告担心Uber公司将会成为一家“从公共机构吸取营养(并由纳税人资助研究)的寄生虫”]。
6 参见Joseph Weizenbaum, Computer Power and Human Reason: From Judgment to Calculation,W. H. Freeman and Company,1976,pp.271-272(该文探讨了资助人工智能研究的资金来源)。
7 参见Vinod Iyengar, Why AI Consolidation Will Create the Worst Monopoly in U.S.History, Techcrunch,Aug.24, 2016.(文章分析了這些主要的科技公司是如何收购那些具有前途的人工智能初创公司的);Quora, What Companies Are Winning the Race for Artificial Intelligence?, Forbes, Feb. 24,2017,当然,也有一些致力于人工智能民主化的努力,包括资金充裕但非营利性的机构OpenAI。 8 See Clay Dillow, Tired of Repetitive Arguing About Climate Change, Scientist Makes a Bot to Argue for Him, Popular Sci.,Nov. 3, 2010.
9 See Cognitive Assistant that Learns and Organizes, SRI INT’L,http://www.ai.sri.com/project/CALO(2017年10月18日访问)。
1 See Ryan Calo, “Robotics and the Lessons of Cyberlaw”, in Calif. L. Rev.,2015,103,p.532.
2 See Matthew Hutson, Our Bots, Ourselves, Atlantic,Mar.3,2017.
3 See “Ethics and Governance of Artificial Intelligence”, Mass. Inst. of Tech. Sch.of Architecture