论文部分内容阅读
为了提高网络流量的预测精度,提出了一种基于小波分析和AR-LSSVM的网络流量组合预测模型。利用Mallat算法对非平稳的网络流量序列进行分解和重构,得到低频信息和高频信息;对具有平稳特性的高频信息用AR模型进行预测,而对体现非平稳的低频信息用LSSVM进行预测;再将各模型的预测结果进行叠加,从而得到原始序列的预测值。仿真结果表明组合预测模型不仅具有较高的预测精度,而且预测性能稳定。