论文部分内容阅读
针对机床热误差补偿技术中预测模型建立的问题,综合多元线性回归及BP神经网络的优点,提出一种机床热误差建模新方法。由不同样本数据建立若干多元线性回归模型,依据统计学理论筛选出预测精度及鲁棒性高的回归模型,预处理后将其结果输入到BP神经网络中进行非线性拟合建模,在不断调节网络权值及对神经网络训练的基础上,最终建立热误差补偿模型。在卧式加工中心上进行试验验证,主轴z向最大热误差从17.895μm减小到1.654gm。