论文部分内容阅读
传统的卷积神经网络(CNN)在人脸识别中应用极为广泛,然而依然存在收敛速度慢的问题,需要进行批归一化,防止梯度弥散.而自归一化卷积神经网络比普通卷积神经网络收敛速度更快,且无需进行批归一化.因此,提出采用自归一化卷积神经网络来进行人脸识别.首先算法由2个卷积层,1个池化层,2个全连接层和1个Softmax回归层组成的自归一化卷积神经网络对人脸特征进行提取并分类;然后通过对不同批次大小和不同网络层数的实验对比找出最佳的实验条件;最后与传统CNN算法和其他算法对比.提出的方法在ORL数据库中的实验识别率可达到