论文部分内容阅读
由于三维轨迹是一个具有连续性和交互性的复杂时间序列,因此,针对无人机飞行轨迹预测问题,结合深度学习理论特点,提出了一种基于双向门控循环单元的无人机飞行轨迹预测方法,进一步提高了轨迹信息的利用率.首先,建立无人机飞行动力模型,仿真获得不同状态的飞行轨迹样本;其次,利用均方误差作为损失函数,确定了双向门控循环单元轨迹预测模型的隐藏层节点参数和迭代次数;最后,利用Adamax算法对双向门控循环单元模型进行优化,实现了无人机飞行轨迹的预测.实验结果表明,双向门控循环单元模型在X,Y,Z轴方向上预测结果的平均绝对误差均在5.0 m内,且轨迹预测平均用时约4.2 ms,与循环神经网络、门控循环单元相比,其预测效果更佳,具有良好的应用价值.