论文部分内容阅读
对于一类在状态转移阵和系统观测阵中带相同的状态依赖乘性噪声、带噪声依赖乘性噪声、一步随机观测滞后、丢包和不确定噪声方差的多传感器网络化系统,文章研究其鲁棒集中式融合稳态滤波问题.应用増广方法将系统转换为带随机参数矩阵、相同过程和观测噪声的集中式融合系统.应用去随机化方法和虚拟噪声技术,系统进一步转化为仅带不确定噪声方差的集中式融合系统.根据极大极小鲁棒估计原理,提出了鲁棒集中式融合稳态Kalman估值器(预报器、滤波器和平滑器),证明了所提出的集中式融合估值器的鲁棒性,给出了鲁棒局部与集中式融合估值器之间的精度关系.提出了应用于多传感器多通道滑动平均(Moving Average,MA)信号估计的一个实例,给出了相应的鲁棒局部和集中式融合信号估值器.仿真实验验证了所提出方法的有效性和正确性.