论文部分内容阅读
传统的比例积分控制器具有一定的局限性,尤其是当被控对象会有非线性、不确定性和时变特性,常规的PID控制器往往难以发挥作用,甚至会失稳.利用神经网络进行复杂过程的PID控制可以很好地解决上述问题.Levenberg—Marquadt(LM)算法是梯度下降法与高斯一牛顿法的结合,就训练次数与精度而言,它明显优于共轭梯度法及变学习率的BP算法,适用于PID控制.得到了在线自适应神经网络PID控制算法,该算法改善了传统BP算法,实现了现有PID控制器控制方法.