论文部分内容阅读
A retrofit procedure for existing buildings called the “weakening and damping technique” (WeD) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Fernando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.
A retrofit procedure for existing buildings called the “weakening and damping technique ” (WeD) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter- story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Fernando Valley in California is selected as a case study. The results from both analyzes show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.