论文部分内容阅读
主成分分析法(Principal Component Analysis,PCA)作为最成功的线性鉴别方法之一,目前仍然被广泛应用于人脸等数字图像处理领域;AdaBoost 是一种具有自适应学习能力的机器学习算法。本文将二维主成分分析和 AdaBoost 结合改进了原来的算法,即2DPCA - AdaBoost 算法。该算法首先对图像进行预处理,然后用2DPCA 算法对人脸图像进行训练形成特征脸空间,结合AdaBoost 学习算法将多个弱分类器组合成强分类器。实验结果证明,改进的算法提高了人脸检测率,降低了