【摘 要】
:
讨论了一类具有信息干预和饱和发生的双随机SIRS传染病模型的动力学行为.通过构造C2函数,证明了双随机模型全局正解的存在唯一性.通过借助随机分析理论,获得了疾病的灭绝性和
【机 构】
:
信阳学院数学与统计学院,河南信阳464000
论文部分内容阅读
讨论了一类具有信息干预和饱和发生的双随机SIRS传染病模型的动力学行为.通过构造C2函数,证明了双随机模型全局正解的存在唯一性.通过借助随机分析理论,获得了疾病的灭绝性和持久性的充分条件.最后,通过数值模拟验证了该研究的结论,并进一步研究了信息干预对疾病的影响.
其他文献
研究一类具有泊松跳的中立型随机时滞微分方程.首先应用Lyapunov-Krasovskii泛函以及Dynkin's公式讨论模型平凡解的p阶矩稳定性问题.接着给出实例验证理论结果的有效性.
研究了一类Euler-Bernoulli板方程的能控性问题.在边界矩控制和扰动作用下,通过算子半群理论和乘子法技术,得到了可控不等式,证明了系统在最优空间上是精确能控的.
研究平坦函数n阶导函数的上确界范数.基于泛函分析的思想,使用基本的数学分析知识,证明了上确界范数之渐近增长快于n的阶乘,并用此结论重新证明了完全单调函数的解析性.文末
构造m=8n(n为正整数)阶完美富兰克林幻方,既有富兰克林幻方的弯曲对角线之和等于幻和L=m/2(m2+1)的性质,又有两条对角线与所有泛对角线之和都等于幻和L的性质,是正规的完美幻
考虑到模糊偏好关系理论的相对完善,在毕达哥拉斯模糊数的距离和贴近度的基础上,将毕达哥拉斯模糊偏好关系转化为贴近度矩阵,并证明其为模糊偏好关系.其次,利用毕达哥拉斯模
一个环R称为弱JU环,如果U(R)=±1+J(R),其中U(R)和J(R)分别表示环R的可逆元集合和Jacobson根.进一步给出弱JU环的一些特征刻画,讨论弱JU环的若干扩张性质.
在一类以Beverton-Holt函数作为出生函数,且疾病仅在成年个体间传播的疾病模型中,考虑到时滞量对系统发展的重要作用,引入了两个时滞量,分别是幼年个体到成年个体的生长时滞
运用陕西省2000-2018年的数据,构建新型城镇化评价指标体系,并利用熵值法计算得到其发展水平,分别选取专利授权量和产业结构水平系数作为科技创新和产业结构升级的衡量指标,
对于在α+β≤1(α>0,β>0)和区间[0,T]上Caputo分数阶导数叠加性成立,那么在一般的n-1<α+β≤n(n∈N+)和任意区间[a,b]下是否还成立Caputo分数阶导数叠加性问题,给出了贝塔函
证明了若(Gn)n∈N可一致粗嵌入到希尔伯特空间,则不交并度量空间Цn∈N Gn能够粗嵌入到一个希尔伯特空间.