论文部分内容阅读
现有最小二乘支持向量机回归的训练和模型输出的计算需要较长的时间,不适合在线实时训练.对此,提出一种在线稀疏最小二乘支持向量机回归,其训练算法采用样本字典,减少了训练样本的计算量.训练样本采用序贯加入的方式,适合在线获取,并且该算法在理论上是收敛的.仿真结果表明,该算法具有较好的稀疏性和实时性,可进一步用于建模与实时控制等方面的研究.