论文部分内容阅读
当T为t-模时,基于模糊取大和T的模糊联想记忆网络(FAM)存在局限性,当T为三角模,是t-模的广义形式,将这种FAM推广成基于Max—T的模糊联想记忆网络Max-TFAM.则Max—TFAM实现了从一个向量空间到另一向量空间的映射,从Max-TFAM的值域角度,分析了它的存储能力,并建立了一个三角模T的伴随蕴涵算子新概念,利用该伴随蕴涵算子,在无需T为连续的、严格增等条件下,提出了MaX-TFAM的一个简洁的通用离线学习算法和通用在线学习算法.从理论上严格证明了只要Max-TFAM能完整可靠地存储所给的