论文部分内容阅读
渐进贝叶斯方法将先验分布到后验分布的演化描述为一阶动态系统,通过在伪时间上连续地引入观测信息实现后验状态估计.该方法的一般形式解,即动态系统的时间导数,是难以得到的.本文提出一种高斯型渐进贝叶斯滤波器.首先在线性高斯条件下推导了时间导数的解析解;然后证明了在该条件下,由该解析解确定的一阶动态系统与常量状态估计的Kalman-Bucy滤波器是一致的,且由此导出的高斯渐进贝叶斯滤波器与卡尔曼滤波器是一致的.最后利用一阶Taylor展开推导了滤波器在非线性高斯条件下的近似解表达式,并采用Monte Carlo方