论文部分内容阅读
To describe canopy emitting thermal radiance precisely and physically is one of the key researches in retrieving land surface temperature (LSI) over vegetation-covered regions by remote sensing technology. This work is aimed at establishing gap probability models to describe the thermal emission characteristics in continuous plant, including the basic model and the sunlit model. They are suitable respectively in the nighttime and in the daytime. The sunlit model is the basic model plus a sunlit correcting item which takes the hot spot effect into account. The researches on the directional distribution of radiance and its relationship to canopy structural parameters, such as the leaf area index (LAI) and leaf angle distribution (LAD), were focused. The characteristics of directional radiance caused by temperature differences among components in canopy, such as those between leaf and soil, and between sunlit leaf or soil and shadowed leaf or soil, were analyzed. A well fitting between experimental data an
To describe canopy emitting thermal radiance precisely and physically is one of the key researches in retrieving land surface temperature (LSI) over vegetation-covered regions by remote sensing technology. This work is aimed at establishing attribution gap probability models to describe the thermal emission characteristics in continuous They are suitable respectively in the nighttime and in the daytime. The sunlit model is the basic model plus a sunlit correcting item which takes the hot spot effect into account. The researches on the directional distribution of radiance and its relationship to canopy structural parameters, such as the leaf area index (LAI) and leaf angle distribution (LAD), were focused. The characteristics of directional radiance caused by temperature differences among components in canopy, such as those between leaf and soil, and between sunlit leaf or soil and shadowed leaf or soil, were analyzed. A well fitting between ex perimental data an