基于拟Shannon区间小波的分步小波方法

来源 :安徽理工大学学报(自然科学版) | 被引量 : 0次 | 上传用户:huangxl2000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
用拟Shannon区间小波解非线性薛定谔方程,为数值解提供了又一有力工具.简要分析了分步方法的一般形式,得出了分步小波方法的算法公式.说明了色散算子矩阵是Toeplitz矩阵,分步小波方法的运算量主要来自色散段中Toeplitz矩阵向量积.该方法减小了该To-eplitz矩阵的存储空间,从而提高了运算速度.以解析解为准,给出了基于拟Shannon区间小波的分步小波方法的相对误差.结果表明,与以往基于Daubeches小波的分步小波方法相比,精确性有了较大提高.“,”Quasi-Shannon interval wavelet was used to solve the nonlinear Schr ?dinger equation , which provided another powerful tool for numerical solution of the equation .The general form of split -step algorithm was studied briefly.The dispersion matrix is Toeplitz matrix , and most of the calculation came from Toeplitz Matrix -Vector Product.This method abated the memory space for Toeplitz Matrix to improve calculating speed .Finally, with the analytic solution being the standard , the accuracy of split -step Wavelet method based on Quasi -Shannon interval wavelet was given .The results show that compared with split -step wavelet method based on Daubechies wavelet, the accuracy has improved greatly .
其他文献
通过高中地理学习,能够有效促进学生的全面发展,使学生的知识与能力都上升到一个新的台阶。然而目前高中地理课堂教学中还存在一些困局,影响了课堂教学的有效性,因此必须采取有效
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
《纲要》指出要“培养幼儿对生活中常见的简单标记和文字符号的兴趣”;要“利用图书绘画和其他多种方式,引发幼儿对书籍、阅读和书写的兴趣,培养前阅读和前书写技能”.因此识
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
城市轨道交通在给人们出行带来便捷的同时,也给人们的生活带来了一些问题。针对城市轨道交通高架线在车辆运行过程产生的桥梁结构噪声问题,在车辆轨道动力学基础上,以双线单
学生参与教学活动既是提高教学成效促进教学成功的关键因素,也是素质教育和新课改对教学的基本要求。教学过程中如何引导学生主动参与课堂教学活动是高中化学教学的一个重点,本
“对分课堂”教学模式是由复旦大学心理系博导张学新教授提出的一种原创性课堂教学新模式。其教学核心理念为:一半的课堂时间由教师支配,一半的课堂时间留给学生自己内化吸收。
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊