基于贝叶斯模型的高效主动探测算法(英文)

来源 :中国通信 | 被引量 : 0次 | 上传用户:xybcn960
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks. Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. However almost all existing probing-based techniques face the following problems 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm extends much faster than BPEA does not sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.
其他文献
水稻(Oryza sativa L.)是世界上最重要的粮食作物之一,提高水稻产量对于解决人类温饱问题具有重要的意义。叶片是水稻主要的光合器官,是水稻株型育种的重要组成部分。研究表明,叶片适度卷曲有利于植株叶片保持直立不披垂,增加中、下层叶片透光率,从而改善群体光照条件,为提高产量奠定了良好株型基础。但叶片早期过度卷曲也会影响植株生长发育,达不到理想效果。后期叶片中度卷曲是最理想的叶片卷曲类型,在水
教师批改作文时要把严格要求与提高学生作文兴趣有机地结合起来,要坚持一分为二的观点,用发展的眼光和战 略的眼光对学生作文进行公正的评价.要努力去发现学生在作文中的进步
玉米的CMS可划分为T、C、S三种类型,其中S型CMS为配子体雄性不育类型,其胞质不育基因被认为与线粒体中的orf355和orf77相关(Zabala,1997)。人们研究发现orf355和orf77在不育花粉中被共转录为两个转录本,而这两个转录本的丰度在育性恢复的花粉中却大大降低(肖海林,2006),在orf77翻译过程中由于orf77经过RNA编辑提前产生终止密码子,使得orf77的蛋白质产物
随着科学技术的日新月异,学校的课堂教学也在不断的变化与发展,在教学中不断地运用多媒体互联网等新技术、新手段.信息技术在课堂中的良好应用,可以让学生及时理解教师的讲课
识字教学是小学低年级语文教学的重要内容,教师要根据的要求,从学生的主体地位出发,结合低 年级小学生的思维特点,调动学生的多种感官,灵活运用趣味识字教学法,化难为易,使学
阅读训练和习作训练是学生培养语文能力的两个途径,二者虽然在形式上有着不同,但两者对培养语文素养方面 是相辅相成、相互促进的.在语文教学中必须抓住读写训练点进行片断训
当前,国家电网公司从我国能源和负荷分布现状以及基本国情出发,提出了规划建设智能电网的战略发展目标。其中通信系统是智能电网建设的基础支撑平台,是智能电网各种管理和控
小学低年级语文教学主要是以识字教学为主,识字量大,内容也较为枯燥.根据学生的注意规律和爱玩、好动、做 事没耐心等特点,在教学过程中,笔者采用富有趣味性的方法,激发学生
在小学语文中不论哪类体裁课文的教学,培养语感的一个重要方式就是“读”.因为朗读可以培养学生对语言文字 所蕴含的形象、情感、色彩和内在意蕴直接敏锐的感知力,对一些优美
新课程标准非常重视语文学习的实践性.这在现在的许多公开课教学中也得到了体现.讲求知行合一、学以致 用,实现整个教学过程的协调完美,这需要全体语文教师的精心设计、匠心