论文部分内容阅读
主要给出饱和多孔微极介质波动方程变分所对应的泛函表达式和有限元离散化方程。首先对u-U形式的饱和多孔微极介质波动方程和边界条件进行Laplace变换,形成力学中的非齐次边值问题,然后构造变分后满足波动方程和边界条件的泛函,最后将有限元插值形式代入泛函表达式得到单元体的有限元离散方程。此方程对微极饱和多孔介质的动力固结问题数值分析具有重要意义。
The functional expressions and finite element discretization equations corresponding to the variational variations of saturated porous micropolar medium are given. Firstly, the uu form of porous micropolar medium wave equation and boundary conditions are Laplace transform to form the nonhomogeneous boundary value problems in mechanics, and then the functional of the wave equation and the boundary condition is constructed after the variational change. At last, the finite element interpolation The formal expression is substituted into the functional expression to obtain the finite element discrete equation of the element body. This equation is of great importance to the numerical analysis of the dynamic consolidation of microporous saturated porous media.