论文部分内容阅读
卷积神经网络的语义分割模型未有效利用特征权重信息,导致在医学图像复杂场景中分割边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的U-Net++网络,并将其应用于电子计算机断层扫描影像肺结节分割。该模型首先在卷积神经网络中提取出不同深度特征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在LIDC数据集和重庆大学附属肿瘤医院肺部电子计算机断层扫描数据集上进行了分割实验,所提方法的交叉比在两