论文部分内容阅读
介绍了一种基于光纤微加工的氢气传感技术方案。利用波长为800nm的飞秒激光脉冲在普通单模光纤上加工马赫-曾德尔(M-Z)干涉腔,并采用磁控溅射方法在加工后的M-Z干涉微腔上溅射钯(Pd)膜,制备了一种新型的光纤氢气传感器。分析了加工工艺对微腔干涉效果的影响,选择合适的加工参数以及加工后对微腔进行后续处理,可使微腔的透射光谱的分辨率得到提高。实验研究了腔长为40μm的M-Z干涉传感器分别镀36nm、110nmPd膜后,对氢气的响应。结果表明,在不同的氢气浓度下,镀Pd膜的M-Z干涉传感器都表现出对氢气的敏感特性,随着氢气浓度的增大,透射光谱会向长波长方向偏移,其中Pd膜厚度为110nm比厚度为36nm的传感器对氢气有更好的灵敏度。
A scheme of hydrogen sensing technology based on optical fiber micromachining is introduced. A Mach-Zehnder (MZ) interference cavity is fabricated on an ordinary single-mode optical fiber by using a femtosecond laser pulse with a wavelength of 800 nm. A palladium (Pd) film is sputtered on the machined MZ interference microcavity by a magnetron sputtering method, A new type of optical fiber hydrogen sensor was prepared. The influence of processing technology on the interference effect of microcavity is analyzed. Selecting the appropriate processing parameters and processing the microcavity after processing can improve the resolution of the microcavity ’s transmission spectrum. Experimental study of the M-Z cavity length of 40μm 36nm, respectively, after the 110nmPd film, the hydrogen response. The results show that at different hydrogen concentrations, Pd-doped MZ sensors exhibit hydrogen sensitive properties. As the concentration of hydrogen increases, the transmission spectra shift to longer wavelength. The Pd film thickness is 110 nm Sensors with a thickness of 36 nm have better hydrogen sensitivity.