论文部分内容阅读
为了提高基于视频的车辆检测技术在应用中的实时性和准确率,提出了一种应用单目视觉进行车辆检测的方法;首先,提取车道边缘,由车道边缘得到道路区域,根据经验知识在车道区域内确定感兴趣区域,减少车辆检测算法搜索范围;接着基于车辆的对称性特征,阴影和边缘特征对兴趣区域进行过滤,进一步缩小感兴趣区域;最后用离线训练好的AdaBoost分类器对过滤后的图像进行分类识别,检测出动态的车辆;实验结果表明,利用该算法能满足实时性和准确性的要求。