论文部分内容阅读
研究了注意力门控卷积循环神经网络的通用音频标记问题.DCASE 2018挑战任务2的音频样本的数据集过少,容易造成过拟合问题.为了减少过拟合问题,采用数据增强方法,dropout策略.采用可学习的上下文门控模块以帮助选择与音频类最相关的特征.采用时间注意力机制关注音频事件的相关帧并且忽略不相关帧.在DCASE2018任务2的数据集上评估了提出的模型,开发集和测试集的平均准确率(MAP@3得分)分别为96.1%和92.4%,远高于此次竞赛的基线系统的平均准确率.