论文部分内容阅读
为了预测水泵在运行中的振动状态,提高水泵运行的安全性和经济性,采用了统计学习理论中的核心算法——支持向量机与自回归方法相结合,建立了水泵振动预测模型(SVAR)。并通过实例,与基于灰色理论建立的预测模型(GM)和基于自回归方法建立的预测模型(AR)进行了比较。结果表明:基于支持向量自回归的水泵振动预测模型(SVAR)具有精度高、速度快、易于建模的特点。应用该方法建立的预测模型能够很好地预测水泵运行中的振动情况,有效地避免水泵运行中由振动引起的故障。