论文部分内容阅读
针对模拟电路故障与特征间存在的模糊组及交叠,首先建立基于Fisher准则函数的最佳聚类数自适应估计方法,采用模糊核聚类选择最优可诊断故障集,然后提出一种基于稀疏贝叶斯相关向量机(RVM)理论的模拟电路故障诊断模型,提高了RVM模拟电路故障分类的效率和准确度;模型可以在贝叶斯框架下对分类函数的权重进行推断,而且得到各分类的验后概率,从而能判断分类结果的置信度,辅助进行诊断决策;仿真结果表明提出的模拟电路诊断模型在精度提高的情况下,比支持向量机需要的向量更少,更具稀疏性和泛化性,是一种有效的模拟电路故障诊断方