低轴压比聚乙烯醇纤维增强水泥基复合材料中长柱抗震性能试验

来源 :复合材料学报 | 被引量 : 0次 | 上传用户:netbaby
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
已有对聚乙烯醇纤维增强水泥基复合材料(PVA/C)柱抗震性能的研究大多针对短柱,且PVA/C一般只在节点及其邻近部位局部设置.基于此,本文对低轴压比且沿柱全高设置的PVA/C中长柱进行低周反复荷载试验,变化参数为纤维体积分数ρf和体积配箍率ρv.通过试验,得出以下结论:所有试件均发生弯曲破坏;当ρf和ρv分别在试验设计范围内增大时,试件的裂缝控制能力、延性、截面转动能力及耗能能力均提高,刚度退化及承载力衰减速度减小;ρf的增大可较大程度提高试件开裂荷载,而对峰值荷载影响较小;ρf由0 vol%提高到2 vol%,位移延性系数、耗能比及开裂荷载分别提高52.9%、112.3%和51.1%;掺加适量纤维后,即使降低配箍率,试件也可保持良好的抗震性能和裂缝形态.根据本文试验数据并收集其他相关文献试验数据,拟合得出位移延性系数与ρf和ρv之间的关系式.最后总结了各类PVA/C柱抗震性能差异.
其他文献
通过有限元模拟与试验相结合的方式,研究环境温度和间隙对复合材料-金属混合结构连接钉载分配和强度的影响.分别建立双钉单剪和三钉单剪有限元模型,并在模型中综合考虑了接触、金属塑性和复合材料渐进损伤等因素,研究了不同温度和间隙情况下钉载的分配情况.研究表明,间隙对初始阶段钉载分配影响较大,但不影响塑性屈服阶段的钉载比例和承载能力;温度改变引起的热应力会带来额外的温度载荷,温度载荷对端部钉载影响较大,温度载荷与机械载荷叠加,会加剧端部钉载的分配不均.
开发高性能的导电凝胶已经成为推动柔性电子设备进一步发展的基石.以天然纤维素为凝胶骨架,以离子液体为导电介质,通过加热溶解-冷却凝胶化过程可以制备高性能的绿色离子液体-纤维素复合凝胶(CGel).复合凝胶中的纤维素基体呈现三维网络结构,并包含大量的孔洞,可以有效吸附和储存离子液体,实现离子液体在纤维素基体中的均匀分布.纤维素离子复合凝胶具有较高的模量(G′>G″)、优异的透明度(88%)、良好的电学性能(2.2 mS/cm)及柔韧性.进一步通过高温加热-冷却凝胶化过程能够实现纤维素离子凝胶体系的再循环生产过
氧化石墨烯(GO)是一种性能良好的光热转换材料,广泛用于海水淡化、光电转换和太阳能利用等领域.为了测试GO负载无纺布膜(GO膜)和聚乙烯醇-氧化石墨烯无纺布复合膜(PVA-GO复合膜)的光热水蒸发特性,通过改进Hummers方法制备GO,选取了纤维素和聚酯类型的无纺布,通过浸泡-超声法制得GO膜和PVA-GO复合膜.运用紫外-可见-近红外光谱仪分析了GO膜和PVA-GO复合膜的吸光性能,并通过电子天平测量GO膜和PVA-GO复合膜的蒸发水量.由于PVA具有亲水性,能增大膜的吸水性,因而PVA加入会使蒸发水
将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体.利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征.结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应.以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能.WO3/g-C3N4质量比为1:5时,表现出最佳的光催化活性,可见光照60 min后,R
以微晶纤维素(Microcrystalline cellulose,MCC)和海藻酸钠(Sodium alginate,SA)为网络框架,海泡石(Sepiolite,SEP)为功能单元,采用悬浮液滴法构建纤维素-海藻酸钠-海泡石(MCC-SA-SEP)双网络多孔复合微球.通过SEM和TG对复合微球结构和热稳定性能进行表征,并研究该微球对亚甲基蓝(Methylene blue,MB)水溶液的吸附性能.结果表明,MCC-SA-SEP复合微球呈现三维网络多孔结构,且随着SEP含量的增加热稳定性逐渐提高.吸附结果
制备普通混凝土(Normal concrete,NC)和橡胶/混凝土基体(Rubber/NC),研究盐冻循环60次内,表观现象、剥落量、抗压强度损失等性能指标劣化过程,采用超声波无损检测法评价混凝土盐冻循环破坏前后超声参数变化,建立相对波速、损伤度与抗压强度的关系,利用SEM观察盐冻循环损伤前后试件微结构变化.结果表明:随盐冻循环次数增加,混凝土试件表面剥蚀愈显著,剥落量增加,内部损伤、强度损失逐渐加剧,超声参数与抗压强度具有密切相关性;混凝土经历盐冻破坏后,内部结构呈疏松絮状,孔隙、裂纹愈加显现,密实度
在碱激发作用下,以矿粉为主要原材料,粉煤灰为辅助材料,共同制备聚乙烯(PE)纤维增强高延性碱矿渣复合材料.通过轴向拉、压实验,研究不同养护龄期(1天、3天、7天、28天、56天、120天)下材料的拉压性能,并借助数字图像技术(DIC)对裂缝进行了表征.结果表明:高延性碱矿渣表现出较好的延性,具有早强特征.7天强度值可达极限强度的84%以上(极限拉压强度分别为5.05 MPa、91.24 MPa),拉伸应变可达5.74%,多缝开裂基本饱和;28天后拉压性能趋于稳定(拉压强度、拉伸应变分别保持在6 MPa、1
为了制备一种高效吸附含Pb(II)废水的生物炭材料,以椰壳(CS)和方解石(CAL)为原料,采用共热解法分别在500℃、600℃、700℃制备了方解石/生物炭(CAL/BC)复合材料.通过SEM、ICP-MS、BET、XRD、FTIR等方法对CAL/BC复合材料的表面微观形态和结构进行了表征.结果发现,三种热解温度条件下,CAL均能够与CS紧密结合,而且CAL/BC具有较大的比表面积,表面含有丰富的官能团.批量吸附实验结果表明,CAL和CS质量比为1:2,pH值为5.5,吸附剂添加量为1.5 g·L?1,
试验研究了6种长径比较小且直径较粗的钢纤维(SF)(短直形、长直线形、圆弧形、闭合三角形、闭合矩形、闭合圆环形)对高性能混凝土性能的影响.通过改变SF体积分数从而改变其形成的环域个数和面积,探究二者对混凝土流动性、抗拉及抗折强度的影响,并通过研究破坏界面分析混凝土破坏形式和机制.结果表明:闭合区域个数及纤维的环域面积对混凝土流动起主要影响;闭合SF中圆环形SF对混凝土抗折及抗压强度的提升效果优于其他形状的闭合SF.短直形SF与圆环形SF混杂试验中,圆环形SF体积分数为1vol%、短直形SF体积分数为0.5
超高韧性水泥基复合材料(UHTCC)是一种具有超高韧性及良好耐久性能的新型复合材料,其抗压韧性是评价其工作性能的重要指标.通过对5组不同纤维掺量的UHTCC在超低温作用后的单轴受压试验,研究超低温作用下UHTCC的抗压韧性评价指标,并对其变形能力进行等效分析,为UHTCC在超低温环境下的工程应用提供理论支持.研究结果表明:在一定范围内,随着纤维体积掺量的增加,UHTCC的抗压强度、抗压韧性均有明显提升,而超出最优掺量后性能反而略有下降;超低温对于UHTCC的抗压强度具有一定的提升作用,当温度降低至?196