论文部分内容阅读
针对分数阶混沌时间序列预测精度低、速度慢的问题,提出了基于量子粒子群优化(QPSO)算法的新型正交基神经网络预测模型。首先,在Laguerre正交基函数的基础上提出一种新型正交基函数,并结合神经网络拓扑构成新型正交基神经网络;其次,利用QPSO算法优化新型正交基神经网络参数,将参数优化问题转化为多维空间上的函数优化问题;最后,根据已优化参数建立预测模型并进行预测分析。分别以分数阶Birkhoff-shaw和Jerk混沌系统为模型,利用Adams-Bashforth-Moulton预估-校正法产生混沌