论文部分内容阅读
等离激元纳米结构具有很强的光子散射和吸收性能,在光热转换、光化学转换和光电转换等领域有重要应用.本文采用时域有限差分方法(FDTD)对金属/介质、介质/金属纳米结构的光子吸收特性进行模拟,讨论了各层相对厚度对不同组合形式纳米结构光谱特性的影响.金属表面等离激元共振效应的激发,产生强烈的近场效应,使得散射和吸收性能显著增强.通过调节粒子尺寸和各层厚度,可以实现共振吸收强度和共振位置在较宽波段范围的有效控制.同时,讨论了金属、介质两种材料的不同组合形式对光谱特性的影响,相比于金属/介质核壳结构,介质/金属复合结构的光谱特性调节作用更强.控制SiO 2/Ag核壳结构各层相对厚度,可以实现光子吸收特性在宽波段范围内的调节和控制,在光热转换领域将有重要应用.
Plasmon nanostructures have strong photon scattering and absorption properties, and have important applications in the fields of photothermal conversion, photochemical conversion and photoelectric conversion.In this paper, the finite difference time domain (FDTD) method is used to analyze the properties of metal / dielectric, dielectric / metal The photon absorption properties of nanostructures were simulated and the influence of the relative thickness of each layer on the spectral characteristics of different combinations of nanostructures was discussed.The excitation of metal surface plasmon resonance resulted in a strong near-field effect, resulting in significant scattering and absorption properties Enhanced by adjusting the particle size and the thickness of each layer can be achieved resonance absorption intensity and resonance position in a wide range of effective control at the same time, discussed the different combinations of metal and dielectric material of the two spectral characteristics of the spectrum, compared to In the metal / dielectric core-shell structure, the spectral properties of the dielectric / metal composite structure have a stronger regulation effect.Controlling the relative thickness of the SiO 2 / Ag core-shell structure layer can realize the adjustment and control of the photon absorption characteristics in the wide band range. Light and heat conversion area will have important applications.