论文部分内容阅读
针对传统的聚类算法K-means对初始中心点的选择非常依赖,容易产生局部最优而非全局最优的聚类结果,同时难以满足人们对海量数据进行处理的需求等缺陷.提出了一种基于MapReduce的改进K-means聚类算法.该算法结合系统抽样方法得到具有代表性的样本集来代替海量数据集;采用密度法和最大最小距离法得到优化的初始聚类中心点;再利用Canopy算法得到粗略的聚类以降低运算的规模;最后用顺序组合MapReduce编程模型的思想实现了算法的并行化扩展,使之能够充分利用集群的计算和存储能力,从而适应海量数据的应用场